Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution
Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFl...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2010-01, Vol.44 (1), p.340-350 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 1 |
container_start_page | 340 |
container_title | Water research (Oxford) |
container_volume | 44 |
creator | Worms, Isabelle A.M. Al-Gorani Szigeti, Zsofia Dubascoux, Stephane Lespes, Gaetane Traber, Jacqueline Sigg, Laura Slaveykova, Vera I. |
description | Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase ( |
doi_str_mv | 10.1016/j.watres.2009.09.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01624861v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409006204</els_id><sourcerecordid>746001528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtR3HH1H4j0RdRDj_nqpONBWAZ1hQEveg416YqbobszJuld9Nebpof1tkKRUJWnvvJW1UtKtpRQ-f64vYMcMW0ZIXq7GFePqg3tlG6YEN3jakOI4A3lrbionqV0JIQwxvXT6oLqjsuO6k2VdmEYgu9hqEP8CZO39Qg5Y6xdDGN9Bylj6VP80gvyiFOuTwOUE50b5uKmD_XuBiLYAvk_kH2Yapj6OoYBaz_VI-ZSvPcpR3-Yl-fn1RMHQ8IX5_uy-vH50_fddbP_9uXr7mrfWKFJbpA6Jp1qFe-EoJJL6CgK3qMjioI7MAqcytYiUZoopp07KM3KZppJkK7nl9W7te4NDOYU_QjxtwngzfXV3iyx8o1MdJLe0sK-WdlTDL9mTNmMPlkcyqoY5mSUkITQlnX_J3kZlkkpC_n2QZIqTkgrJVEFFStqY0gporuflxKzyG2OZpXbLHKbxfiS9urcYT6M2P9LOutbgNdnAJKFwUWYrE_3HGOs05QuS31cOSx63HqMJlmPk8XeR7TZ9ME_PMlfYB3KjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730056607</pqid></control><display><type>article</type><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</creator><creatorcontrib>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</creatorcontrib><description>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (<0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.09.037</identifier><identifier>PMID: 19836819</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analytical chemistry ; Applied sciences ; Asymmetrical flow field-flow fractionation ; Cadmium ; Carbon ; Chemical Sciences ; Chromium ; Colloids ; Colloids - analysis ; Colloids - chemistry ; Dissolution ; Environmental Sciences ; Exact sciences and technology ; LC-OCD ; Manganese ; Metal binding ; Metals - analysis ; Other industrial wastes. Sewage sludge ; Pollution ; Silver ; Tangential flow ultrafiltration ; Ultrafiltration ; Waste Disposal, Fluid - methods ; Wastes ; Wastewater effluent ; Wastewater treatment ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2010-01, Vol.44 (1), p.340-350</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</citedby><cites>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</cites><orcidid>0000-0002-1752-8923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.09.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22289118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19836819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01624861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Worms, Isabelle A.M.</creatorcontrib><creatorcontrib>Al-Gorani Szigeti, Zsofia</creatorcontrib><creatorcontrib>Dubascoux, Stephane</creatorcontrib><creatorcontrib>Lespes, Gaetane</creatorcontrib><creatorcontrib>Traber, Jacqueline</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><creatorcontrib>Slaveykova, Vera I.</creatorcontrib><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (<0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Asymmetrical flow field-flow fractionation</subject><subject>Cadmium</subject><subject>Carbon</subject><subject>Chemical Sciences</subject><subject>Chromium</subject><subject>Colloids</subject><subject>Colloids - analysis</subject><subject>Colloids - chemistry</subject><subject>Dissolution</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>LC-OCD</subject><subject>Manganese</subject><subject>Metal binding</subject><subject>Metals - analysis</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Pollution</subject><subject>Silver</subject><subject>Tangential flow ultrafiltration</subject><subject>Ultrafiltration</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastes</subject><subject>Wastewater effluent</subject><subject>Wastewater treatment</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhhtR3HH1H4j0RdRDj_nqpONBWAZ1hQEveg416YqbobszJuld9Nebpof1tkKRUJWnvvJW1UtKtpRQ-f64vYMcMW0ZIXq7GFePqg3tlG6YEN3jakOI4A3lrbionqV0JIQwxvXT6oLqjsuO6k2VdmEYgu9hqEP8CZO39Qg5Y6xdDGN9Bylj6VP80gvyiFOuTwOUE50b5uKmD_XuBiLYAvk_kH2Yapj6OoYBaz_VI-ZSvPcpR3-Yl-fn1RMHQ8IX5_uy-vH50_fddbP_9uXr7mrfWKFJbpA6Jp1qFe-EoJJL6CgK3qMjioI7MAqcytYiUZoopp07KM3KZppJkK7nl9W7te4NDOYU_QjxtwngzfXV3iyx8o1MdJLe0sK-WdlTDL9mTNmMPlkcyqoY5mSUkITQlnX_J3kZlkkpC_n2QZIqTkgrJVEFFStqY0gporuflxKzyG2OZpXbLHKbxfiS9urcYT6M2P9LOutbgNdnAJKFwUWYrE_3HGOs05QuS31cOSx63HqMJlmPk8XeR7TZ9ME_PMlfYB3KjQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Worms, Isabelle A.M.</creator><creator>Al-Gorani Szigeti, Zsofia</creator><creator>Dubascoux, Stephane</creator><creator>Lespes, Gaetane</creator><creator>Traber, Jacqueline</creator><creator>Sigg, Laura</creator><creator>Slaveykova, Vera I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>IWA Publishing/Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1752-8923</orcidid></search><sort><creationdate>201001</creationdate><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><author>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Asymmetrical flow field-flow fractionation</topic><topic>Cadmium</topic><topic>Carbon</topic><topic>Chemical Sciences</topic><topic>Chromium</topic><topic>Colloids</topic><topic>Colloids - analysis</topic><topic>Colloids - chemistry</topic><topic>Dissolution</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>LC-OCD</topic><topic>Manganese</topic><topic>Metal binding</topic><topic>Metals - analysis</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Pollution</topic><topic>Silver</topic><topic>Tangential flow ultrafiltration</topic><topic>Ultrafiltration</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastes</topic><topic>Wastewater effluent</topic><topic>Wastewater treatment</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worms, Isabelle A.M.</creatorcontrib><creatorcontrib>Al-Gorani Szigeti, Zsofia</creatorcontrib><creatorcontrib>Dubascoux, Stephane</creatorcontrib><creatorcontrib>Lespes, Gaetane</creatorcontrib><creatorcontrib>Traber, Jacqueline</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><creatorcontrib>Slaveykova, Vera I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worms, Isabelle A.M.</au><au>Al-Gorani Szigeti, Zsofia</au><au>Dubascoux, Stephane</au><au>Lespes, Gaetane</au><au>Traber, Jacqueline</au><au>Sigg, Laura</au><au>Slaveykova, Vera I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2010-01</date><risdate>2010</risdate><volume>44</volume><issue>1</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (<0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19836819</pmid><doi>10.1016/j.watres.2009.09.037</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1752-8923</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2010-01, Vol.44 (1), p.340-350 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01624861v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Analytical chemistry Applied sciences Asymmetrical flow field-flow fractionation Cadmium Carbon Chemical Sciences Chromium Colloids Colloids - analysis Colloids - chemistry Dissolution Environmental Sciences Exact sciences and technology LC-OCD Manganese Metal binding Metals - analysis Other industrial wastes. Sewage sludge Pollution Silver Tangential flow ultrafiltration Ultrafiltration Waste Disposal, Fluid - methods Wastes Wastewater effluent Wastewater treatment Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water treatment and pollution |
title | Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20organic%20matter%20from%20wastewater%20treatment%20plant%20effluents:%20Characterization%20and%20role%20in%20metal%20distribution&rft.jtitle=Water%20research%20(Oxford)&rft.au=Worms,%20Isabelle%20A.M.&rft.date=2010-01&rft.volume=44&rft.issue=1&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.09.037&rft_dat=%3Cproquest_hal_p%3E746001528%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730056607&rft_id=info:pmid/19836819&rft_els_id=S0043135409006204&rfr_iscdi=true |