Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution

Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2010-01, Vol.44 (1), p.340-350
Hauptverfasser: Worms, Isabelle A.M., Al-Gorani Szigeti, Zsofia, Dubascoux, Stephane, Lespes, Gaetane, Traber, Jacqueline, Sigg, Laura, Slaveykova, Vera I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 1
container_start_page 340
container_title Water research (Oxford)
container_volume 44
creator Worms, Isabelle A.M.
Al-Gorani Szigeti, Zsofia
Dubascoux, Stephane
Lespes, Gaetane
Traber, Jacqueline
Sigg, Laura
Slaveykova, Vera I.
description Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (
doi_str_mv 10.1016/j.watres.2009.09.037
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01624861v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409006204</els_id><sourcerecordid>746001528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtR3HH1H4j0RdRDj_nqpONBWAZ1hQEveg416YqbobszJuld9Nebpof1tkKRUJWnvvJW1UtKtpRQ-f64vYMcMW0ZIXq7GFePqg3tlG6YEN3jakOI4A3lrbionqV0JIQwxvXT6oLqjsuO6k2VdmEYgu9hqEP8CZO39Qg5Y6xdDGN9Bylj6VP80gvyiFOuTwOUE50b5uKmD_XuBiLYAvk_kH2Yapj6OoYBaz_VI-ZSvPcpR3-Yl-fn1RMHQ8IX5_uy-vH50_fddbP_9uXr7mrfWKFJbpA6Jp1qFe-EoJJL6CgK3qMjioI7MAqcytYiUZoopp07KM3KZppJkK7nl9W7te4NDOYU_QjxtwngzfXV3iyx8o1MdJLe0sK-WdlTDL9mTNmMPlkcyqoY5mSUkITQlnX_J3kZlkkpC_n2QZIqTkgrJVEFFStqY0gporuflxKzyG2OZpXbLHKbxfiS9urcYT6M2P9LOutbgNdnAJKFwUWYrE_3HGOs05QuS31cOSx63HqMJlmPk8XeR7TZ9ME_PMlfYB3KjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730056607</pqid></control><display><type>article</type><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</creator><creatorcontrib>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</creatorcontrib><description>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (&lt;0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.09.037</identifier><identifier>PMID: 19836819</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analytical chemistry ; Applied sciences ; Asymmetrical flow field-flow fractionation ; Cadmium ; Carbon ; Chemical Sciences ; Chromium ; Colloids ; Colloids - analysis ; Colloids - chemistry ; Dissolution ; Environmental Sciences ; Exact sciences and technology ; LC-OCD ; Manganese ; Metal binding ; Metals - analysis ; Other industrial wastes. Sewage sludge ; Pollution ; Silver ; Tangential flow ultrafiltration ; Ultrafiltration ; Waste Disposal, Fluid - methods ; Wastes ; Wastewater effluent ; Wastewater treatment ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2010-01, Vol.44 (1), p.340-350</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</citedby><cites>FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</cites><orcidid>0000-0002-1752-8923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.09.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22289118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19836819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01624861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Worms, Isabelle A.M.</creatorcontrib><creatorcontrib>Al-Gorani Szigeti, Zsofia</creatorcontrib><creatorcontrib>Dubascoux, Stephane</creatorcontrib><creatorcontrib>Lespes, Gaetane</creatorcontrib><creatorcontrib>Traber, Jacqueline</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><creatorcontrib>Slaveykova, Vera I.</creatorcontrib><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (&lt;0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Asymmetrical flow field-flow fractionation</subject><subject>Cadmium</subject><subject>Carbon</subject><subject>Chemical Sciences</subject><subject>Chromium</subject><subject>Colloids</subject><subject>Colloids - analysis</subject><subject>Colloids - chemistry</subject><subject>Dissolution</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>LC-OCD</subject><subject>Manganese</subject><subject>Metal binding</subject><subject>Metals - analysis</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Pollution</subject><subject>Silver</subject><subject>Tangential flow ultrafiltration</subject><subject>Ultrafiltration</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastes</subject><subject>Wastewater effluent</subject><subject>Wastewater treatment</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhhtR3HH1H4j0RdRDj_nqpONBWAZ1hQEveg416YqbobszJuld9Nebpof1tkKRUJWnvvJW1UtKtpRQ-f64vYMcMW0ZIXq7GFePqg3tlG6YEN3jakOI4A3lrbionqV0JIQwxvXT6oLqjsuO6k2VdmEYgu9hqEP8CZO39Qg5Y6xdDGN9Bylj6VP80gvyiFOuTwOUE50b5uKmD_XuBiLYAvk_kH2Yapj6OoYBaz_VI-ZSvPcpR3-Yl-fn1RMHQ8IX5_uy-vH50_fddbP_9uXr7mrfWKFJbpA6Jp1qFe-EoJJL6CgK3qMjioI7MAqcytYiUZoopp07KM3KZppJkK7nl9W7te4NDOYU_QjxtwngzfXV3iyx8o1MdJLe0sK-WdlTDL9mTNmMPlkcyqoY5mSUkITQlnX_J3kZlkkpC_n2QZIqTkgrJVEFFStqY0gporuflxKzyG2OZpXbLHKbxfiS9urcYT6M2P9LOutbgNdnAJKFwUWYrE_3HGOs05QuS31cOSx63HqMJlmPk8XeR7TZ9ME_PMlfYB3KjQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Worms, Isabelle A.M.</creator><creator>Al-Gorani Szigeti, Zsofia</creator><creator>Dubascoux, Stephane</creator><creator>Lespes, Gaetane</creator><creator>Traber, Jacqueline</creator><creator>Sigg, Laura</creator><creator>Slaveykova, Vera I.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>IWA Publishing/Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1752-8923</orcidid></search><sort><creationdate>201001</creationdate><title>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</title><author>Worms, Isabelle A.M. ; Al-Gorani Szigeti, Zsofia ; Dubascoux, Stephane ; Lespes, Gaetane ; Traber, Jacqueline ; Sigg, Laura ; Slaveykova, Vera I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e1f26f75738441636a81e43def071afb21a3165ce0790729ffb792983926a6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Asymmetrical flow field-flow fractionation</topic><topic>Cadmium</topic><topic>Carbon</topic><topic>Chemical Sciences</topic><topic>Chromium</topic><topic>Colloids</topic><topic>Colloids - analysis</topic><topic>Colloids - chemistry</topic><topic>Dissolution</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>LC-OCD</topic><topic>Manganese</topic><topic>Metal binding</topic><topic>Metals - analysis</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Pollution</topic><topic>Silver</topic><topic>Tangential flow ultrafiltration</topic><topic>Ultrafiltration</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastes</topic><topic>Wastewater effluent</topic><topic>Wastewater treatment</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worms, Isabelle A.M.</creatorcontrib><creatorcontrib>Al-Gorani Szigeti, Zsofia</creatorcontrib><creatorcontrib>Dubascoux, Stephane</creatorcontrib><creatorcontrib>Lespes, Gaetane</creatorcontrib><creatorcontrib>Traber, Jacqueline</creatorcontrib><creatorcontrib>Sigg, Laura</creatorcontrib><creatorcontrib>Slaveykova, Vera I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worms, Isabelle A.M.</au><au>Al-Gorani Szigeti, Zsofia</au><au>Dubascoux, Stephane</au><au>Lespes, Gaetane</au><au>Traber, Jacqueline</au><au>Sigg, Laura</au><au>Slaveykova, Vera I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2010-01</date><risdate>2010</risdate><volume>44</volume><issue>1</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (&lt;0.45μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19836819</pmid><doi>10.1016/j.watres.2009.09.037</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1752-8923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2010-01, Vol.44 (1), p.340-350
issn 0043-1354
1879-2448
language eng
recordid cdi_hal_primary_oai_HAL_hal_01624861v1
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Analytical chemistry
Applied sciences
Asymmetrical flow field-flow fractionation
Cadmium
Carbon
Chemical Sciences
Chromium
Colloids
Colloids - analysis
Colloids - chemistry
Dissolution
Environmental Sciences
Exact sciences and technology
LC-OCD
Manganese
Metal binding
Metals - analysis
Other industrial wastes. Sewage sludge
Pollution
Silver
Tangential flow ultrafiltration
Ultrafiltration
Waste Disposal, Fluid - methods
Wastes
Wastewater effluent
Wastewater treatment
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water treatment and pollution
title Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20organic%20matter%20from%20wastewater%20treatment%20plant%20effluents:%20Characterization%20and%20role%20in%20metal%20distribution&rft.jtitle=Water%20research%20(Oxford)&rft.au=Worms,%20Isabelle%20A.M.&rft.date=2010-01&rft.volume=44&rft.issue=1&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.09.037&rft_dat=%3Cproquest_hal_p%3E746001528%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730056607&rft_id=info:pmid/19836819&rft_els_id=S0043135409006204&rfr_iscdi=true