Recognition of white matter bundles using local and global streamline-based registration and clustering

Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2018-04, Vol.170, p.283-295
Hauptverfasser: Garyfallidis, Eleftherios, Côté, Marc-Alexandre, Rheault, Francois, Sidhu, Jasmeen, Hau, Janice, Petit, Laurent, Fortin, David, Cunanne, Stephen, Descoteaux, Maxime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue
container_start_page 283
container_title NeuroImage (Orlando, Fla.)
container_volume 170
creator Garyfallidis, Eleftherios
Côté, Marc-Alexandre
Rheault, Francois
Sidhu, Jasmeen
Hau, Janice
Petit, Laurent
Fortin, David
Cunanne, Stephen
Descoteaux, Maxime
description Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. [Display omitted]
doi_str_mv 10.1016/j.neuroimage.2017.07.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01622403v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917305839</els_id><sourcerecordid>1920199183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-ba5875c074aed3f5746feac5cd6c8909f39ff62f7d79a9bf89b93d5d3f863d2a3</originalsourceid><addsrcrecordid>eNqFkVFrFTEQhYMotlb_ggR80Ye9JtnNbvJYi1rhgiD6HLLJZJtLNqnJbov_vtnetoIvwkDC8J0zyRmEMCU7Smj_8bCLsObkZz3BjhE67Egtyp-hU0okbyQf2PPtzttGUCpP0KtSDoQQSTvxEp0wMVAmZXeKph9g0hT94lPEyeHbK78AnvWyQMbjGm2Agtfi44RDMjpgHS2eQhrrtSwZ9Bx8hGbUBSzOMPna1PdmG2jCWqpRVb9GL5wOBd48nGfo15fPPy8um_33r98uzveN4Zwt1YeLgRsydBps6_jQ9Q604cb2RkgiXSud65kb7CC1HJ2Qo2wtr6joW8t0e4Y-HH2vdFDXuSaU_6ikvbo836utV-NjrCPtDa3s-yN7ndPvFcqiZl8MhKAjpLUoKmu0UlLRVvTdP-ghrTnWn6gtfkYF6UmlxJEyOZWSwT29gBK1LU4d1N_F3SsVqUV5lb59GLCOM9gn4eOmKvDpCEBN78ZDVsV4iAasz2AWZZP__5Q7YcGv2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017218060</pqid></control><display><type>article</type><title>Recognition of white matter bundles using local and global streamline-based registration and clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Garyfallidis, Eleftherios ; Côté, Marc-Alexandre ; Rheault, Francois ; Sidhu, Jasmeen ; Hau, Janice ; Petit, Laurent ; Fortin, David ; Cunanne, Stephen ; Descoteaux, Maxime</creator><creatorcontrib>Garyfallidis, Eleftherios ; Côté, Marc-Alexandre ; Rheault, Francois ; Sidhu, Jasmeen ; Hau, Janice ; Petit, Laurent ; Fortin, David ; Cunanne, Stephen ; Descoteaux, Maxime</creatorcontrib><description>Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. [Display omitted]</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.07.015</identifier><identifier>PMID: 28712994</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anatomy ; Attention deficit hyperactivity disorder ; Automation ; Brain ; Brain Neoplasms - diagnostic imaging ; Bundles ; Clustering ; Cognitive science ; Computer Simulation ; Data processing ; Datasets as Topic ; Diffusion MRI ; Diffusion Tensor Imaging - methods ; Extraction ; Fascicles ; Fiber tracking ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Methods ; Nervous system ; Neuroimaging - methods ; Neuroscience ; Neurosurgery ; Pattern Recognition, Automated - methods ; Recognition ; Registration ; Software packages ; Streamlines ; Substantia alba ; Tracts ; Tumors ; Virtual dissection ; White Matter - diagnostic imaging</subject><ispartof>NeuroImage (Orlando, Fla.), 2018-04, Vol.170, p.283-295</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-ba5875c074aed3f5746feac5cd6c8909f39ff62f7d79a9bf89b93d5d3f863d2a3</citedby><cites>FETCH-LOGICAL-c552t-ba5875c074aed3f5746feac5cd6c8909f39ff62f7d79a9bf89b93d5d3f863d2a3</cites><orcidid>0000-0003-2499-5367 ; 0000-0002-0761-0210 ; 0000-0002-8191-2129 ; 0000-0002-0097-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811917305839$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28712994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01622403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garyfallidis, Eleftherios</creatorcontrib><creatorcontrib>Côté, Marc-Alexandre</creatorcontrib><creatorcontrib>Rheault, Francois</creatorcontrib><creatorcontrib>Sidhu, Jasmeen</creatorcontrib><creatorcontrib>Hau, Janice</creatorcontrib><creatorcontrib>Petit, Laurent</creatorcontrib><creatorcontrib>Fortin, David</creatorcontrib><creatorcontrib>Cunanne, Stephen</creatorcontrib><creatorcontrib>Descoteaux, Maxime</creatorcontrib><title>Recognition of white matter bundles using local and global streamline-based registration and clustering</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. [Display omitted]</description><subject>Anatomy</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Automation</subject><subject>Brain</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Bundles</subject><subject>Clustering</subject><subject>Cognitive science</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Datasets as Topic</subject><subject>Diffusion MRI</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Extraction</subject><subject>Fascicles</subject><subject>Fiber tracking</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Methods</subject><subject>Nervous system</subject><subject>Neuroimaging - methods</subject><subject>Neuroscience</subject><subject>Neurosurgery</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recognition</subject><subject>Registration</subject><subject>Software packages</subject><subject>Streamlines</subject><subject>Substantia alba</subject><subject>Tracts</subject><subject>Tumors</subject><subject>Virtual dissection</subject><subject>White Matter - diagnostic imaging</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkVFrFTEQhYMotlb_ggR80Ye9JtnNbvJYi1rhgiD6HLLJZJtLNqnJbov_vtnetoIvwkDC8J0zyRmEMCU7Smj_8bCLsObkZz3BjhE67Egtyp-hU0okbyQf2PPtzttGUCpP0KtSDoQQSTvxEp0wMVAmZXeKph9g0hT94lPEyeHbK78AnvWyQMbjGm2Agtfi44RDMjpgHS2eQhrrtSwZ9Bx8hGbUBSzOMPna1PdmG2jCWqpRVb9GL5wOBd48nGfo15fPPy8um_33r98uzveN4Zwt1YeLgRsydBps6_jQ9Q604cb2RkgiXSud65kb7CC1HJ2Qo2wtr6joW8t0e4Y-HH2vdFDXuSaU_6ikvbo836utV-NjrCPtDa3s-yN7ndPvFcqiZl8MhKAjpLUoKmu0UlLRVvTdP-ghrTnWn6gtfkYF6UmlxJEyOZWSwT29gBK1LU4d1N_F3SsVqUV5lb59GLCOM9gn4eOmKvDpCEBN78ZDVsV4iAasz2AWZZP__5Q7YcGv2g</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Garyfallidis, Eleftherios</creator><creator>Côté, Marc-Alexandre</creator><creator>Rheault, Francois</creator><creator>Sidhu, Jasmeen</creator><creator>Hau, Janice</creator><creator>Petit, Laurent</creator><creator>Fortin, David</creator><creator>Cunanne, Stephen</creator><creator>Descoteaux, Maxime</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2499-5367</orcidid><orcidid>https://orcid.org/0000-0002-0761-0210</orcidid><orcidid>https://orcid.org/0000-0002-8191-2129</orcidid><orcidid>https://orcid.org/0000-0002-0097-8004</orcidid></search><sort><creationdate>20180415</creationdate><title>Recognition of white matter bundles using local and global streamline-based registration and clustering</title><author>Garyfallidis, Eleftherios ; Côté, Marc-Alexandre ; Rheault, Francois ; Sidhu, Jasmeen ; Hau, Janice ; Petit, Laurent ; Fortin, David ; Cunanne, Stephen ; Descoteaux, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-ba5875c074aed3f5746feac5cd6c8909f39ff62f7d79a9bf89b93d5d3f863d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatomy</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Automation</topic><topic>Brain</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Bundles</topic><topic>Clustering</topic><topic>Cognitive science</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Datasets as Topic</topic><topic>Diffusion MRI</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Extraction</topic><topic>Fascicles</topic><topic>Fiber tracking</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Methods</topic><topic>Nervous system</topic><topic>Neuroimaging - methods</topic><topic>Neuroscience</topic><topic>Neurosurgery</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recognition</topic><topic>Registration</topic><topic>Software packages</topic><topic>Streamlines</topic><topic>Substantia alba</topic><topic>Tracts</topic><topic>Tumors</topic><topic>Virtual dissection</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garyfallidis, Eleftherios</creatorcontrib><creatorcontrib>Côté, Marc-Alexandre</creatorcontrib><creatorcontrib>Rheault, Francois</creatorcontrib><creatorcontrib>Sidhu, Jasmeen</creatorcontrib><creatorcontrib>Hau, Janice</creatorcontrib><creatorcontrib>Petit, Laurent</creatorcontrib><creatorcontrib>Fortin, David</creatorcontrib><creatorcontrib>Cunanne, Stephen</creatorcontrib><creatorcontrib>Descoteaux, Maxime</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garyfallidis, Eleftherios</au><au>Côté, Marc-Alexandre</au><au>Rheault, Francois</au><au>Sidhu, Jasmeen</au><au>Hau, Janice</au><au>Petit, Laurent</au><au>Fortin, David</au><au>Cunanne, Stephen</au><au>Descoteaux, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition of white matter bundles using local and global streamline-based registration and clustering</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2018-04-15</date><risdate>2018</risdate><volume>170</volume><spage>283</spage><epage>295</epage><pages>283-295</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28712994</pmid><doi>10.1016/j.neuroimage.2017.07.015</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2499-5367</orcidid><orcidid>https://orcid.org/0000-0002-0761-0210</orcidid><orcidid>https://orcid.org/0000-0002-8191-2129</orcidid><orcidid>https://orcid.org/0000-0002-0097-8004</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2018-04, Vol.170, p.283-295
issn 1053-8119
1095-9572
language eng
recordid cdi_hal_primary_oai_HAL_hal_01622403v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anatomy
Attention deficit hyperactivity disorder
Automation
Brain
Brain Neoplasms - diagnostic imaging
Bundles
Clustering
Cognitive science
Computer Simulation
Data processing
Datasets as Topic
Diffusion MRI
Diffusion Tensor Imaging - methods
Extraction
Fascicles
Fiber tracking
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Methods
Nervous system
Neuroimaging - methods
Neuroscience
Neurosurgery
Pattern Recognition, Automated - methods
Recognition
Registration
Software packages
Streamlines
Substantia alba
Tracts
Tumors
Virtual dissection
White Matter - diagnostic imaging
title Recognition of white matter bundles using local and global streamline-based registration and clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20of%20white%20matter%20bundles%20using%20local%20and%20global%20streamline-based%20registration%20and%20clustering&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Garyfallidis,%20Eleftherios&rft.date=2018-04-15&rft.volume=170&rft.spage=283&rft.epage=295&rft.pages=283-295&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.07.015&rft_dat=%3Cproquest_hal_p%3E1920199183%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017218060&rft_id=info:pmid/28712994&rft_els_id=S1053811917305839&rfr_iscdi=true