Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm

Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2002-06, Vol.68 (3), p.185-193
Hauptverfasser: Barra, Vincent, Boire, Jean-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 3
container_start_page 185
container_title Computer methods and programs in biomedicine
container_volume 68
creator Barra, Vincent
Boire, Jean-Yves
description Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.
doi_str_mv 10.1016/S0169-2607(01)00172-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01621800v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260701001729</els_id><sourcerecordid>71839182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModq3-BCU3ir0YPclMMslVKcW2wopg9TpkMmdmI_OxJplC_73ZD9rLDeSD8JyTlzyEvGfwhQGTX-_zogsuof4M7AKA1bzQL8iKqXyohRQvyeoJOSNvYvwLAFwI-ZqcMQ51pSqxIs099iNOySY_T3TuaGcTtVNLxyW6AWkX5pH--EX9aHuMOyBtME_fb2jzSC3dzjH6xg8-Ju-oG5aYMPipp3bo5-DTZnxLXnV2iPjuuJ-TPzfffl_fFeuft9-vr9aFq1SdCs0aDYigpCoFdJUEEI0qwSlglpeiZW3HKwsCJG-UzsMqQFbXDSgLqirPycWh78YOZhty4vBoZuvN3dXa7O7yd3CmAB5YZj8d2G2Y_y0Ykxl9dDgMdsJ5iaZmqtRM8ZMgr6WuVHm6I1NScKlFBsUBdCF_XcDuKSsDs1Nr9mrNzluObPZqjc51H44PLM2I7XPV0WUGPh4BG50dumAn5-MzV0pZ6X3SywOHWcaDx2Ci8zg5bH1Al0w7-xNR_gMwI70v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18652695</pqid></control><display><type>article</type><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Barra, Vincent ; Boire, Jean-Yves</creator><creatorcontrib>Barra, Vincent ; Boire, Jean-Yves</creatorcontrib><description>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(01)00172-9</identifier><identifier>PMID: 12074845</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Body composition ; Computer Science ; Computerized, statistical medical data processing and models in biomedicine ; Fats - analysis ; Female ; Fuzzy clustering ; General aspects. Methods ; Humans ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Middle Aged ; MR imaging ; Muscles - diagnostic imaging ; Physical training ; Radiography ; Reproducibility of Results ; Signal and Image Processing ; Thigh - diagnostic imaging</subject><ispartof>Computer methods and programs in biomedicine, 2002-06, Vol.68 (3), p.185-193</ispartof><rights>2002 Elsevier Science Ireland Ltd</rights><rights>2002 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</citedby><cites>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</cites><orcidid>0000-0002-8975-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-2607(01)00172-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13664931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12074845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uca.hal.science/hal-01621800$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barra, Vincent</creatorcontrib><creatorcontrib>Boire, Jean-Yves</creatorcontrib><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Body composition</subject><subject>Computer Science</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Fats - analysis</subject><subject>Female</subject><subject>Fuzzy clustering</subject><subject>General aspects. Methods</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>MR imaging</subject><subject>Muscles - diagnostic imaging</subject><subject>Physical training</subject><subject>Radiography</subject><subject>Reproducibility of Results</subject><subject>Signal and Image Processing</subject><subject>Thigh - diagnostic imaging</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModq3-BCU3ir0YPclMMslVKcW2wopg9TpkMmdmI_OxJplC_73ZD9rLDeSD8JyTlzyEvGfwhQGTX-_zogsuof4M7AKA1bzQL8iKqXyohRQvyeoJOSNvYvwLAFwI-ZqcMQ51pSqxIs099iNOySY_T3TuaGcTtVNLxyW6AWkX5pH--EX9aHuMOyBtME_fb2jzSC3dzjH6xg8-Ju-oG5aYMPipp3bo5-DTZnxLXnV2iPjuuJ-TPzfffl_fFeuft9-vr9aFq1SdCs0aDYigpCoFdJUEEI0qwSlglpeiZW3HKwsCJG-UzsMqQFbXDSgLqirPycWh78YOZhty4vBoZuvN3dXa7O7yd3CmAB5YZj8d2G2Y_y0Ykxl9dDgMdsJ5iaZmqtRM8ZMgr6WuVHm6I1NScKlFBsUBdCF_XcDuKSsDs1Nr9mrNzluObPZqjc51H44PLM2I7XPV0WUGPh4BG50dumAn5-MzV0pZ6X3SywOHWcaDx2Ci8zg5bH1Al0w7-xNR_gMwI70v</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Barra, Vincent</creator><creator>Boire, Jean-Yves</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8975-222X</orcidid></search><sort><creationdate>20020601</creationdate><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><author>Barra, Vincent ; Boire, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Body composition</topic><topic>Computer Science</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Fats - analysis</topic><topic>Female</topic><topic>Fuzzy clustering</topic><topic>General aspects. Methods</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>MR imaging</topic><topic>Muscles - diagnostic imaging</topic><topic>Physical training</topic><topic>Radiography</topic><topic>Reproducibility of Results</topic><topic>Signal and Image Processing</topic><topic>Thigh - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barra, Vincent</creatorcontrib><creatorcontrib>Boire, Jean-Yves</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barra, Vincent</au><au>Boire, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>68</volume><issue>3</issue><spage>185</spage><epage>193</epage><pages>185-193</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>12074845</pmid><doi>10.1016/S0169-2607(01)00172-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8975-222X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2002-06, Vol.68 (3), p.185-193
issn 0169-2607
1872-7565
language eng
recordid cdi_hal_primary_oai_HAL_hal_01621800v1
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Biological and medical sciences
Body composition
Computer Science
Computerized, statistical medical data processing and models in biomedicine
Fats - analysis
Female
Fuzzy clustering
General aspects. Methods
Humans
Machine Learning
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
MR imaging
Muscles - diagnostic imaging
Physical training
Radiography
Reproducibility of Results
Signal and Image Processing
Thigh - diagnostic imaging
title Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20fat%20and%20muscle%20from%20MR%20images%20of%20the%20thigh%20by%20a%20possibilistic%20clustering%20algorithm&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Barra,%20Vincent&rft.date=2002-06-01&rft.volume=68&rft.issue=3&rft.spage=185&rft.epage=193&rft.pages=185-193&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(01)00172-9&rft_dat=%3Cproquest_hal_p%3E71839182%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18652695&rft_id=info:pmid/12074845&rft_els_id=S0169260701001729&rfr_iscdi=true