Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm
Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The techn...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2002-06, Vol.68 (3), p.185-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 3 |
container_start_page | 185 |
container_title | Computer methods and programs in biomedicine |
container_volume | 68 |
creator | Barra, Vincent Boire, Jean-Yves |
description | Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight. |
doi_str_mv | 10.1016/S0169-2607(01)00172-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01621800v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260701001729</els_id><sourcerecordid>71839182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModq3-BCU3ir0YPclMMslVKcW2wopg9TpkMmdmI_OxJplC_73ZD9rLDeSD8JyTlzyEvGfwhQGTX-_zogsuof4M7AKA1bzQL8iKqXyohRQvyeoJOSNvYvwLAFwI-ZqcMQ51pSqxIs099iNOySY_T3TuaGcTtVNLxyW6AWkX5pH--EX9aHuMOyBtME_fb2jzSC3dzjH6xg8-Ju-oG5aYMPipp3bo5-DTZnxLXnV2iPjuuJ-TPzfffl_fFeuft9-vr9aFq1SdCs0aDYigpCoFdJUEEI0qwSlglpeiZW3HKwsCJG-UzsMqQFbXDSgLqirPycWh78YOZhty4vBoZuvN3dXa7O7yd3CmAB5YZj8d2G2Y_y0Ykxl9dDgMdsJ5iaZmqtRM8ZMgr6WuVHm6I1NScKlFBsUBdCF_XcDuKSsDs1Nr9mrNzluObPZqjc51H44PLM2I7XPV0WUGPh4BG50dumAn5-MzV0pZ6X3SywOHWcaDx2Ci8zg5bH1Al0w7-xNR_gMwI70v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18652695</pqid></control><display><type>article</type><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Barra, Vincent ; Boire, Jean-Yves</creator><creatorcontrib>Barra, Vincent ; Boire, Jean-Yves</creatorcontrib><description>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(01)00172-9</identifier><identifier>PMID: 12074845</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Body composition ; Computer Science ; Computerized, statistical medical data processing and models in biomedicine ; Fats - analysis ; Female ; Fuzzy clustering ; General aspects. Methods ; Humans ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Middle Aged ; MR imaging ; Muscles - diagnostic imaging ; Physical training ; Radiography ; Reproducibility of Results ; Signal and Image Processing ; Thigh - diagnostic imaging</subject><ispartof>Computer methods and programs in biomedicine, 2002-06, Vol.68 (3), p.185-193</ispartof><rights>2002 Elsevier Science Ireland Ltd</rights><rights>2002 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</citedby><cites>FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</cites><orcidid>0000-0002-8975-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-2607(01)00172-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13664931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12074845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uca.hal.science/hal-01621800$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barra, Vincent</creatorcontrib><creatorcontrib>Boire, Jean-Yves</creatorcontrib><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Body composition</subject><subject>Computer Science</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Fats - analysis</subject><subject>Female</subject><subject>Fuzzy clustering</subject><subject>General aspects. Methods</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>MR imaging</subject><subject>Muscles - diagnostic imaging</subject><subject>Physical training</subject><subject>Radiography</subject><subject>Reproducibility of Results</subject><subject>Signal and Image Processing</subject><subject>Thigh - diagnostic imaging</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModq3-BCU3ir0YPclMMslVKcW2wopg9TpkMmdmI_OxJplC_73ZD9rLDeSD8JyTlzyEvGfwhQGTX-_zogsuof4M7AKA1bzQL8iKqXyohRQvyeoJOSNvYvwLAFwI-ZqcMQ51pSqxIs099iNOySY_T3TuaGcTtVNLxyW6AWkX5pH--EX9aHuMOyBtME_fb2jzSC3dzjH6xg8-Ju-oG5aYMPipp3bo5-DTZnxLXnV2iPjuuJ-TPzfffl_fFeuft9-vr9aFq1SdCs0aDYigpCoFdJUEEI0qwSlglpeiZW3HKwsCJG-UzsMqQFbXDSgLqirPycWh78YOZhty4vBoZuvN3dXa7O7yd3CmAB5YZj8d2G2Y_y0Ykxl9dDgMdsJ5iaZmqtRM8ZMgr6WuVHm6I1NScKlFBsUBdCF_XcDuKSsDs1Nr9mrNzluObPZqjc51H44PLM2I7XPV0WUGPh4BG50dumAn5-MzV0pZ6X3SywOHWcaDx2Ci8zg5bH1Al0w7-xNR_gMwI70v</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Barra, Vincent</creator><creator>Boire, Jean-Yves</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8975-222X</orcidid></search><sort><creationdate>20020601</creationdate><title>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</title><author>Barra, Vincent ; Boire, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-91b90ee0868350f46005b830c801a235d1df24a05062b89999a80e177b08a0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Body composition</topic><topic>Computer Science</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Fats - analysis</topic><topic>Female</topic><topic>Fuzzy clustering</topic><topic>General aspects. Methods</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>MR imaging</topic><topic>Muscles - diagnostic imaging</topic><topic>Physical training</topic><topic>Radiography</topic><topic>Reproducibility of Results</topic><topic>Signal and Image Processing</topic><topic>Thigh - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barra, Vincent</creatorcontrib><creatorcontrib>Boire, Jean-Yves</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barra, Vincent</au><au>Boire, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>68</volume><issue>3</issue><spage>185</spage><epage>193</epage><pages>185-193</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Physical training is proved to induce changes in physical capacity and body composition. We propose in this article a fast, unsupervised and fully three-dimensional automatic method to extract muscle and fat volumes from magnetic resonance images of thighs in order to assess these changes. The technique relies on the use of a fuzzy clustering algorithm and post-processings to trustfully process the body composition of thighs. Results are compared on 11 healthy voluntary elderly people with those provided on the same data by a validated method already published, and its reliability is assessed on repeated measures on three subjects. The two methods statistically agree when computing muscle and fat volumes, and clinical implications of this fully automatic method are important for medicine, physical conditioning, weight-loss programs and predictions of optimal body weight.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>12074845</pmid><doi>10.1016/S0169-2607(01)00172-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8975-222X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2002-06, Vol.68 (3), p.185-193 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01621800v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Biological and medical sciences Body composition Computer Science Computerized, statistical medical data processing and models in biomedicine Fats - analysis Female Fuzzy clustering General aspects. Methods Humans Machine Learning Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged MR imaging Muscles - diagnostic imaging Physical training Radiography Reproducibility of Results Signal and Image Processing Thigh - diagnostic imaging |
title | Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20fat%20and%20muscle%20from%20MR%20images%20of%20the%20thigh%20by%20a%20possibilistic%20clustering%20algorithm&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Barra,%20Vincent&rft.date=2002-06-01&rft.volume=68&rft.issue=3&rft.spage=185&rft.epage=193&rft.pages=185-193&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(01)00172-9&rft_dat=%3Cproquest_hal_p%3E71839182%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18652695&rft_id=info:pmid/12074845&rft_els_id=S0169260701001729&rfr_iscdi=true |