Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints

This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2017-11, Vol.109, p.30-36
Hauptverfasser: Hermosilla, Cristopher, Vinter, Richard, Zidani, Hasnaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue
container_start_page 30
container_title Systems & control letters
container_volume 109
creator Hermosilla, Cristopher
Vinter, Richard
Zidani, Hasnaa
description This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. •We provide a characterization of the Value Function of an Optimal Control problem with state constraint sets.•A NFT theorem is proved without requiring any of the so-called Inward/Outward Pointing Conditions.•The technique relies on the convexity of the state constraint set and the graph of the dynamics.•We generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior.
doi_str_mv 10.1016/j.sysconle.2017.09.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01619018v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691117301688</els_id><sourcerecordid>oai_HAL_hal_01619018v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-bf2298b9fb2a0b342e75b2eff1f0b55e2bd77650f2c46692703f9db4372a3cb03</originalsourceid><addsrcrecordid>eNqFkMtOGzEUhq2qSE2BV0Cz7WKmx56L413TiDagSGxgbdmeY8XRZJzabiA73oE35EnqUQpbVuei_z-Xj5ArChUF2n3fVvEYjR8HrBhQXoGoAJpPZEbnnJVctN1nMstCXnaC0i_ka4xbAGBQ1zOiVmrnhuTH1-eXW2W8djn5icOwU2OBf_6q5PwYC-tD4ffJ7dRQ5FUp-KHYB28wRozFo0ubqX3ApyImlXAqYgrKjSlekDOrhoiX_-M5efh1fb9cleu73zfLxbo0ddOlUlvGxFwLq5kCXTcMeasZWkst6LZFpnvOuxYsM03XCcahtqLXTc2Zqo2G-px8O83dqEHuQz41HKVXTq4Wazn1MgIqgM4PNGu7k9YEH2NA-26gICeocivfoMoJqgQhM9Rs_HEyYv7k4DDIaByOBnsX0CTZe_fRiH_P9IgK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hermosilla, Cristopher ; Vinter, Richard ; Zidani, Hasnaa</creator><creatorcontrib>Hermosilla, Cristopher ; Vinter, Richard ; Zidani, Hasnaa</creatorcontrib><description>This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. •We provide a characterization of the Value Function of an Optimal Control problem with state constraint sets.•A NFT theorem is proved without requiring any of the so-called Inward/Outward Pointing Conditions.•The technique relies on the convexity of the state constraint set and the graph of the dynamics.•We generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2017.09.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic ; Convex constraints ; Engineering Sciences ; HJB equations ; Mathematics ; Optimal control problems ; Optimization and Control ; State constraint sets ; Viscosity solutions</subject><ispartof>Systems &amp; control letters, 2017-11, Vol.109, p.30-36</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-bf2298b9fb2a0b342e75b2eff1f0b55e2bd77650f2c46692703f9db4372a3cb03</citedby><cites>FETCH-LOGICAL-c346t-bf2298b9fb2a0b342e75b2eff1f0b55e2bd77650f2c46692703f9db4372a3cb03</cites><orcidid>0000-0003-3583-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2017.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://ensta-paris.hal.science/hal-01619018$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermosilla, Cristopher</creatorcontrib><creatorcontrib>Vinter, Richard</creatorcontrib><creatorcontrib>Zidani, Hasnaa</creatorcontrib><title>Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints</title><title>Systems &amp; control letters</title><description>This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. •We provide a characterization of the Value Function of an Optimal Control problem with state constraint sets.•A NFT theorem is proved without requiring any of the so-called Inward/Outward Pointing Conditions.•The technique relies on the convexity of the state constraint set and the graph of the dynamics.•We generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior.</description><subject>Automatic</subject><subject>Convex constraints</subject><subject>Engineering Sciences</subject><subject>HJB equations</subject><subject>Mathematics</subject><subject>Optimal control problems</subject><subject>Optimization and Control</subject><subject>State constraint sets</subject><subject>Viscosity solutions</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOGzEUhq2qSE2BV0Cz7WKmx56L413TiDagSGxgbdmeY8XRZJzabiA73oE35EnqUQpbVuei_z-Xj5ArChUF2n3fVvEYjR8HrBhQXoGoAJpPZEbnnJVctN1nMstCXnaC0i_ka4xbAGBQ1zOiVmrnhuTH1-eXW2W8djn5icOwU2OBf_6q5PwYC-tD4ffJ7dRQ5FUp-KHYB28wRozFo0ubqX3ApyImlXAqYgrKjSlekDOrhoiX_-M5efh1fb9cleu73zfLxbo0ddOlUlvGxFwLq5kCXTcMeasZWkst6LZFpnvOuxYsM03XCcahtqLXTc2Zqo2G-px8O83dqEHuQz41HKVXTq4Wazn1MgIqgM4PNGu7k9YEH2NA-26gICeocivfoMoJqgQhM9Rs_HEyYv7k4DDIaByOBnsX0CTZe_fRiH_P9IgK</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Hermosilla, Cristopher</creator><creator>Vinter, Richard</creator><creator>Zidani, Hasnaa</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3583-6863</orcidid></search><sort><creationdate>20171101</creationdate><title>Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints</title><author>Hermosilla, Cristopher ; Vinter, Richard ; Zidani, Hasnaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-bf2298b9fb2a0b342e75b2eff1f0b55e2bd77650f2c46692703f9db4372a3cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automatic</topic><topic>Convex constraints</topic><topic>Engineering Sciences</topic><topic>HJB equations</topic><topic>Mathematics</topic><topic>Optimal control problems</topic><topic>Optimization and Control</topic><topic>State constraint sets</topic><topic>Viscosity solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermosilla, Cristopher</creatorcontrib><creatorcontrib>Vinter, Richard</creatorcontrib><creatorcontrib>Zidani, Hasnaa</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermosilla, Cristopher</au><au>Vinter, Richard</au><au>Zidani, Hasnaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints</atitle><jtitle>Systems &amp; control letters</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>109</volume><spage>30</spage><epage>36</epage><pages>30-36</pages><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. •We provide a characterization of the Value Function of an Optimal Control problem with state constraint sets.•A NFT theorem is proved without requiring any of the so-called Inward/Outward Pointing Conditions.•The technique relies on the convexity of the state constraint set and the graph of the dynamics.•We generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2017.09.004</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3583-6863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2017-11, Vol.109, p.30-36
issn 0167-6911
1872-7956
language eng
recordid cdi_hal_primary_oai_HAL_hal_01619018v1
source Elsevier ScienceDirect Journals Complete
subjects Automatic
Convex constraints
Engineering Sciences
HJB equations
Mathematics
Optimal control problems
Optimization and Control
State constraint sets
Viscosity solutions
title Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamilton%E2%80%93Jacobi%E2%80%93Bellman%20equations%20for%20optimal%20control%20processes%20with%20convex%20state%20constraints&rft.jtitle=Systems%20&%20control%20letters&rft.au=Hermosilla,%20Cristopher&rft.date=2017-11-01&rft.volume=109&rft.spage=30&rft.epage=36&rft.pages=30-36&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2017.09.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01619018v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167691117301688&rfr_iscdi=true