Agreement theorem for neo-additive beliefs

In this paper, we extend Aumann's (Ann Stat 4:1236—1239, 1976) probabilistic agreement theorem to situations in which agents' prior beliefs are represented by a common neo-additive capacity. In particular, we characterize the family of updating rules for neo-additive capacities, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic theory 2013-01, Vol.52 (1), p.1-13
Hauptverfasser: Dominiak, Adam, Lefort, Jean-Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Economic theory
container_volume 52
creator Dominiak, Adam
Lefort, Jean-Philippe
description In this paper, we extend Aumann's (Ann Stat 4:1236—1239, 1976) probabilistic agreement theorem to situations in which agents' prior beliefs are represented by a common neo-additive capacity. In particular, we characterize the family of updating rules for neo-additive capacities, which are necessary and sufficient for the impossibility of "agreeing to disagree" on the values of posterior capacities as well as on the values of posterior Choquet expectations for binary acts. Furthermore, we show that generalizations of this result to more general acts are impossible.
doi_str_mv 10.1007/s00199-011-0678-7
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01615841v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334040895</galeid><jstor_id>23470322</jstor_id><sourcerecordid>A334040895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-9d822b66121f7aafac421e207034557b2503ae1f7e1a56c62231c995a4278c2f3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpoNtNP0APhYVe2lKnM_pjWccltE1gIZf2LLTesVeLbaWSHci3r4xL2JRSBBKMfm-GN4-xtwhXCKC_JAA0pgDEAkpdFfoFW6EUvACpzUu2AiOqgnNlXrHXKZ0AQKmyWrFP2zYS9TSMm_FIIVK_aULcDBQKdzj40T_QZk-dpyZdsovGdYne_HnX7Oe3rz-ub4rd3ffb6-2uqJUWY2EOFef7skSOjXaucbXkSBw0CKmU3nMFwlH-I3SqrEvOBdbGKCe5rmreiDX7uPQ9us7eR9-7-GiD8_Zmu7NzDbBEVUl8wMx-WNj7GH5NlEbb-1RT17nsYEoWBWpVKcwz1-z9X-gpTHHITmZKIoI2Z1TrOrJ-aMIYXT03tVshJEiojMrU1T-ofA7U-zoM1Phcfyb4fCbYT8kPlPKVfHscU-umlJ7juOB1DClFap72gGDnvO2Sd14F2jlvq7OGL5qU2aGleObvP6J3i-iUxhCfpnAhc1w5md8AarCx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314110790</pqid></control><display><type>article</type><title>Agreement theorem for neo-additive beliefs</title><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dominiak, Adam ; Lefort, Jean-Philippe</creator><creatorcontrib>Dominiak, Adam ; Lefort, Jean-Philippe</creatorcontrib><description>In this paper, we extend Aumann's (Ann Stat 4:1236—1239, 1976) probabilistic agreement theorem to situations in which agents' prior beliefs are represented by a common neo-additive capacity. In particular, we characterize the family of updating rules for neo-additive capacities, which are necessary and sufficient for the impossibility of "agreeing to disagree" on the values of posterior capacities as well as on the values of posterior Choquet expectations for binary acts. Furthermore, we show that generalizations of this result to more general acts are impossible.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-011-0678-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Agreements ; Ambiguity ; Analysis ; Asymmetric information ; Asymmetry ; Attitudes ; Beliefs ; Betting ; Decision theory ; Distribution (Probability theory) ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Expected utility ; Family ; Game Theory ; Information asymmetry ; Mathematical functions ; Mathematical theorems ; Microeconomics ; Probability ; Probability distribution ; Psychological attitudes ; Public Finance ; Quantitative Finance ; Research Article ; Social and Behav. Sciences ; Studies ; Uncertainty ; Updating ; Utility functions</subject><ispartof>Economic theory, 2013-01, Vol.52 (1), p.1-13</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag 2011</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-9d822b66121f7aafac421e207034557b2503ae1f7e1a56c62231c995a4278c2f3</citedby><cites>FETCH-LOGICAL-c573t-9d822b66121f7aafac421e207034557b2503ae1f7e1a56c62231c995a4278c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23470322$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23470322$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27915,27916,41479,42548,51310,58008,58241</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01615841$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominiak, Adam</creatorcontrib><creatorcontrib>Lefort, Jean-Philippe</creatorcontrib><title>Agreement theorem for neo-additive beliefs</title><title>Economic theory</title><addtitle>Econ Theory</addtitle><description>In this paper, we extend Aumann's (Ann Stat 4:1236—1239, 1976) probabilistic agreement theorem to situations in which agents' prior beliefs are represented by a common neo-additive capacity. In particular, we characterize the family of updating rules for neo-additive capacities, which are necessary and sufficient for the impossibility of "agreeing to disagree" on the values of posterior capacities as well as on the values of posterior Choquet expectations for binary acts. Furthermore, we show that generalizations of this result to more general acts are impossible.</description><subject>Agreements</subject><subject>Ambiguity</subject><subject>Analysis</subject><subject>Asymmetric information</subject><subject>Asymmetry</subject><subject>Attitudes</subject><subject>Beliefs</subject><subject>Betting</subject><subject>Decision theory</subject><subject>Distribution (Probability theory)</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Expected utility</subject><subject>Family</subject><subject>Game Theory</subject><subject>Information asymmetry</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Microeconomics</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Psychological attitudes</subject><subject>Public Finance</subject><subject>Quantitative Finance</subject><subject>Research Article</subject><subject>Social and Behav. Sciences</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Updating</subject><subject>Utility functions</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9r3DAQxUVpoNtNP0APhYVe2lKnM_pjWccltE1gIZf2LLTesVeLbaWSHci3r4xL2JRSBBKMfm-GN4-xtwhXCKC_JAA0pgDEAkpdFfoFW6EUvACpzUu2AiOqgnNlXrHXKZ0AQKmyWrFP2zYS9TSMm_FIIVK_aULcDBQKdzj40T_QZk-dpyZdsovGdYne_HnX7Oe3rz-ub4rd3ffb6-2uqJUWY2EOFef7skSOjXaucbXkSBw0CKmU3nMFwlH-I3SqrEvOBdbGKCe5rmreiDX7uPQ9us7eR9-7-GiD8_Zmu7NzDbBEVUl8wMx-WNj7GH5NlEbb-1RT17nsYEoWBWpVKcwz1-z9X-gpTHHITmZKIoI2Z1TrOrJ-aMIYXT03tVshJEiojMrU1T-ofA7U-zoM1Phcfyb4fCbYT8kPlPKVfHscU-umlJ7juOB1DClFap72gGDnvO2Sd14F2jlvq7OGL5qU2aGleObvP6J3i-iUxhCfpnAhc1w5md8AarCx</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Dominiak, Adam</creator><creator>Lefort, Jean-Philippe</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20130101</creationdate><title>Agreement theorem for neo-additive beliefs</title><author>Dominiak, Adam ; Lefort, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-9d822b66121f7aafac421e207034557b2503ae1f7e1a56c62231c995a4278c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agreements</topic><topic>Ambiguity</topic><topic>Analysis</topic><topic>Asymmetric information</topic><topic>Asymmetry</topic><topic>Attitudes</topic><topic>Beliefs</topic><topic>Betting</topic><topic>Decision theory</topic><topic>Distribution (Probability theory)</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Expected utility</topic><topic>Family</topic><topic>Game Theory</topic><topic>Information asymmetry</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Microeconomics</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Psychological attitudes</topic><topic>Public Finance</topic><topic>Quantitative Finance</topic><topic>Research Article</topic><topic>Social and Behav. Sciences</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Updating</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominiak, Adam</creatorcontrib><creatorcontrib>Lefort, Jean-Philippe</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominiak, Adam</au><au>Lefort, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agreement theorem for neo-additive beliefs</atitle><jtitle>Economic theory</jtitle><stitle>Econ Theory</stitle><date>2013-01-01</date><risdate>2013</risdate><volume>52</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>In this paper, we extend Aumann's (Ann Stat 4:1236—1239, 1976) probabilistic agreement theorem to situations in which agents' prior beliefs are represented by a common neo-additive capacity. In particular, we characterize the family of updating rules for neo-additive capacities, which are necessary and sufficient for the impossibility of "agreeing to disagree" on the values of posterior capacities as well as on the values of posterior Choquet expectations for binary acts. Furthermore, we show that generalizations of this result to more general acts are impossible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00199-011-0678-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-2259
ispartof Economic theory, 2013-01, Vol.52 (1), p.1-13
issn 0938-2259
1432-0479
language eng
recordid cdi_hal_primary_oai_HAL_hal_01615841v1
source EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Agreements
Ambiguity
Analysis
Asymmetric information
Asymmetry
Attitudes
Beliefs
Betting
Decision theory
Distribution (Probability theory)
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Equilibrium
Expected utility
Family
Game Theory
Information asymmetry
Mathematical functions
Mathematical theorems
Microeconomics
Probability
Probability distribution
Psychological attitudes
Public Finance
Quantitative Finance
Research Article
Social and Behav. Sciences
Studies
Uncertainty
Updating
Utility functions
title Agreement theorem for neo-additive beliefs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agreement%20theorem%20for%20neo-additive%20beliefs&rft.jtitle=Economic%20theory&rft.au=Dominiak,%20Adam&rft.date=2013-01-01&rft.volume=52&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-011-0678-7&rft_dat=%3Cgale_hal_p%3EA334040895%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314110790&rft_id=info:pmid/&rft_galeid=A334040895&rft_jstor_id=23470322&rfr_iscdi=true