Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy

In this study, we have synthesized a new Ti–23Nb–0.7Ta–2Zr–0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shape memory and superelasticity : advances in science and technology 2016-03, Vol.2 (1), p.18-28
Hauptverfasser: Castany, P., Gordin, D. M., Drob, S. I., Vasilescu, C., Mitran, V., Cimpean, A., Gloriant, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 18
container_title Shape memory and superelasticity : advances in science and technology
container_volume 2
creator Castany, P.
Gordin, D. M.
Drob, S. I.
Vasilescu, C.
Mitran, V.
Cimpean, A.
Gloriant, T.
description In this study, we have synthesized a new Ti–23Nb–0.7Ta–2Zr–0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.
doi_str_mv 10.1007/s40830-016-0057-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01614786v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880749222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9a6df380603bb71a5c43102b4dda37361a5a2957a041964f2e181bbc04bde88f3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhiMEElXpA7BFYmJIOb4kdsZSLkUqZaBIiMVyEoe6SuJip0jdeAfekCfBIahiYTq37_919AfBKYIxAmAXjgInEAFKIoCYRXAQDDBK04jwmB_ue_p8HIycWwMARhRwAoOguFKlsbVstWnCe5WvZKNd7ULZFOGlNrmpN_6W6Uq3u9CUYbtS4eN2o6yqpGt1Hi7118cnJovMFxizpezGF_szxYtwUlVmdxIclbJyavRbh8HTzfVyOovmD7d308k8yklK2iiVSVESDgmQLGNIxjklCHBGi0ISRhK_kTiNmQSK0oSWWCGOsiwHmhWK85IMg_PedyUrsbG6lnYnjNRiNpmLbucTQpTx5B159qxnN9a8bZVrxdpsbePfE4hzYDTFGHsK9VRujXNWlXtbBKLLXvTZd86iy16A1-Be4zzbvCr7x_lf0TcIv4eO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880749222</pqid></control><display><type>article</type><title>Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy</title><source>SpringerLink Journals</source><creator>Castany, P. ; Gordin, D. M. ; Drob, S. I. ; Vasilescu, C. ; Mitran, V. ; Cimpean, A. ; Gloriant, T.</creator><creatorcontrib>Castany, P. ; Gordin, D. M. ; Drob, S. I. ; Vasilescu, C. ; Mitran, V. ; Cimpean, A. ; Gloriant, T.</creatorcontrib><description>In this study, we have synthesized a new Ti–23Nb–0.7Ta–2Zr–0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.</description><identifier>ISSN: 2199-384X</identifier><identifier>EISSN: 2199-3858</identifier><identifier>DOI: 10.1007/s40830-016-0057-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biocompatibility ; Characterization and Evaluation of Materials ; Chemical Sciences ; Chemistry and Materials Science ; Invited Paper ; Martensitic transformations ; Material chemistry ; Materials Science ; Mechanical properties ; Special Issue: Research on Biomedical Shape Memory Alloys</subject><ispartof>Shape memory and superelasticity : advances in science and technology, 2016-03, Vol.2 (1), p.18-28</ispartof><rights>ASM International 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9a6df380603bb71a5c43102b4dda37361a5a2957a041964f2e181bbc04bde88f3</citedby><cites>FETCH-LOGICAL-c393t-9a6df380603bb71a5c43102b4dda37361a5a2957a041964f2e181bbc04bde88f3</cites><orcidid>0000-0002-0070-4388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40830-016-0057-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40830-016-0057-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://univ-rennes.hal.science/hal-01614786$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castany, P.</creatorcontrib><creatorcontrib>Gordin, D. M.</creatorcontrib><creatorcontrib>Drob, S. I.</creatorcontrib><creatorcontrib>Vasilescu, C.</creatorcontrib><creatorcontrib>Mitran, V.</creatorcontrib><creatorcontrib>Cimpean, A.</creatorcontrib><creatorcontrib>Gloriant, T.</creatorcontrib><title>Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy</title><title>Shape memory and superelasticity : advances in science and technology</title><addtitle>Shap. Mem. Superelasticity</addtitle><description>In this study, we have synthesized a new Ti–23Nb–0.7Ta–2Zr–0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.</description><subject>Biocompatibility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Invited Paper</subject><subject>Martensitic transformations</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Special Issue: Research on Biomedical Shape Memory Alloys</subject><issn>2199-384X</issn><issn>2199-3858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhiMEElXpA7BFYmJIOb4kdsZSLkUqZaBIiMVyEoe6SuJip0jdeAfekCfBIahiYTq37_919AfBKYIxAmAXjgInEAFKIoCYRXAQDDBK04jwmB_ue_p8HIycWwMARhRwAoOguFKlsbVstWnCe5WvZKNd7ULZFOGlNrmpN_6W6Uq3u9CUYbtS4eN2o6yqpGt1Hi7118cnJovMFxizpezGF_szxYtwUlVmdxIclbJyavRbh8HTzfVyOovmD7d308k8yklK2iiVSVESDgmQLGNIxjklCHBGi0ISRhK_kTiNmQSK0oSWWCGOsiwHmhWK85IMg_PedyUrsbG6lnYnjNRiNpmLbucTQpTx5B159qxnN9a8bZVrxdpsbePfE4hzYDTFGHsK9VRujXNWlXtbBKLLXvTZd86iy16A1-Be4zzbvCr7x_lf0TcIv4eO</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Castany, P.</creator><creator>Gordin, D. M.</creator><creator>Drob, S. I.</creator><creator>Vasilescu, C.</creator><creator>Mitran, V.</creator><creator>Cimpean, A.</creator><creator>Gloriant, T.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0070-4388</orcidid></search><sort><creationdate>20160301</creationdate><title>Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy</title><author>Castany, P. ; Gordin, D. M. ; Drob, S. I. ; Vasilescu, C. ; Mitran, V. ; Cimpean, A. ; Gloriant, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9a6df380603bb71a5c43102b4dda37361a5a2957a041964f2e181bbc04bde88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocompatibility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Invited Paper</topic><topic>Martensitic transformations</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Special Issue: Research on Biomedical Shape Memory Alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castany, P.</creatorcontrib><creatorcontrib>Gordin, D. M.</creatorcontrib><creatorcontrib>Drob, S. I.</creatorcontrib><creatorcontrib>Vasilescu, C.</creatorcontrib><creatorcontrib>Mitran, V.</creatorcontrib><creatorcontrib>Cimpean, A.</creatorcontrib><creatorcontrib>Gloriant, T.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Shape memory and superelasticity : advances in science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castany, P.</au><au>Gordin, D. M.</au><au>Drob, S. I.</au><au>Vasilescu, C.</au><au>Mitran, V.</au><au>Cimpean, A.</au><au>Gloriant, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy</atitle><jtitle>Shape memory and superelasticity : advances in science and technology</jtitle><stitle>Shap. Mem. Superelasticity</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>2</volume><issue>1</issue><spage>18</spage><epage>28</epage><pages>18-28</pages><issn>2199-384X</issn><eissn>2199-3858</eissn><abstract>In this study, we have synthesized a new Ti–23Nb–0.7Ta–2Zr–0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40830-016-0057-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0070-4388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-384X
ispartof Shape memory and superelasticity : advances in science and technology, 2016-03, Vol.2 (1), p.18-28
issn 2199-384X
2199-3858
language eng
recordid cdi_hal_primary_oai_HAL_hal_01614786v1
source SpringerLink Journals
subjects Biocompatibility
Characterization and Evaluation of Materials
Chemical Sciences
Chemistry and Materials Science
Invited Paper
Martensitic transformations
Material chemistry
Materials Science
Mechanical properties
Special Issue: Research on Biomedical Shape Memory Alloys
title Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20Mechanisms%20and%20Biocompatibility%20of%20the%20Superelastic%20Ti%E2%80%9323Nb%E2%80%930.7Ta%E2%80%932Zr%E2%80%930.5N%20Alloy&rft.jtitle=Shape%20memory%20and%20superelasticity%20:%20advances%20in%20science%20and%20technology&rft.au=Castany,%20P.&rft.date=2016-03-01&rft.volume=2&rft.issue=1&rft.spage=18&rft.epage=28&rft.pages=18-28&rft.issn=2199-384X&rft.eissn=2199-3858&rft_id=info:doi/10.1007/s40830-016-0057-0&rft_dat=%3Cproquest_hal_p%3E1880749222%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880749222&rft_id=info:pmid/&rfr_iscdi=true