New insights into the limit for non-partitioning ferrite growth
The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LE...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2015-03, Vol.86, p.286-294 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | |
container_start_page | 286 |
container_title | Acta materialia |
container_volume | 86 |
creator | Panahi, D. Van Landeghem, H. Hutchinson, C.R. Purdy, G. Zurob, H.S. |
description | The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LENP) model. The ferrite layer formed below the LENP limit consisted of columnar grains and showed continuous, parabolic growth kinetics. In contrast, ferrite growth above the LENP limit showed two distinct stages. Initially, a thin layer of columnar ferrite grains formed and grew rapidly for a short period of time. In the second stage, the ferrite layer appeared to increase in thickness at a very low rate. The slow growth of the ferrite layer was associated with a strong depletion of carbon content in austenite as well as the formation of new ferrite grains as opposed to the growth of existing grains. The evolution of the carbon concentration in austenite was used to infer the operating interfacial contact conditions as a function of time. The evolution of the interfacial austenite conditions is suggested to penetrate deep into the two-phase region as predicted by ferrite growth theories that account for free-energy dissipation during the austenite-to-ferrite phase transformation. |
doi_str_mv | 10.1016/j.actamat.2014.12.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01614324v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414009355</els_id><sourcerecordid>1677955030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-db688d4c7d2c2a3be59276dc92a94369cdfd7f37d24492b911ef03bff9f446093</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqXwCUhZwiLBrzjxqqoqoEgVbGBtOX40rtK42G4r_h5XqdiymquZM3c0N8vuISghgPRpUwoZxVbEEgFISohKAJuLbAKbGheIVPgyaVyxgpKKXGc3IWwAgKgmYJLN3vUxt0Ow6y6GJKLLY6fz3m5tzI3z-eCGYid8tNG6wQ7r3GjvbdT52rtj7G6zKyP6oO_OdZp9vTx_LpbF6uP1bTFfFRLXNBaqpU2jiKwVkkjgVlcM1VRJhgQjmDKpjKoNTmNCGGoZhNoA3BrDDCEUMDzNHkffTvR85-1W-B_uhOXL-YqfeikISDAiB5jYh5Hdefe91yHyrQ1S970YtNsHDmlds6oCGCS0GlHpXQhemz9vCPgpXL7h53D5KVwOUbrUpL3ZuKfTzwerPQ_S6kFqZb2WkStn_3H4BeoDhK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677955030</pqid></control><display><type>article</type><title>New insights into the limit for non-partitioning ferrite growth</title><source>Elsevier ScienceDirect Journals</source><creator>Panahi, D. ; Van Landeghem, H. ; Hutchinson, C.R. ; Purdy, G. ; Zurob, H.S.</creator><creatorcontrib>Panahi, D. ; Van Landeghem, H. ; Hutchinson, C.R. ; Purdy, G. ; Zurob, H.S.</creatorcontrib><description>The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LENP) model. The ferrite layer formed below the LENP limit consisted of columnar grains and showed continuous, parabolic growth kinetics. In contrast, ferrite growth above the LENP limit showed two distinct stages. Initially, a thin layer of columnar ferrite grains formed and grew rapidly for a short period of time. In the second stage, the ferrite layer appeared to increase in thickness at a very low rate. The slow growth of the ferrite layer was associated with a strong depletion of carbon content in austenite as well as the formation of new ferrite grains as opposed to the growth of existing grains. The evolution of the carbon concentration in austenite was used to infer the operating interfacial contact conditions as a function of time. The evolution of the interfacial austenite conditions is suggested to penetrate deep into the two-phase region as predicted by ferrite growth theories that account for free-energy dissipation during the austenite-to-ferrite phase transformation.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.12.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Austenite ; Carbon ; Condensed Matter ; Constraining ; Contact ; Decarburization ; Dissipation ; Engineering Sciences ; Evolution ; Ferrite ; Ferrite growth ; Grains ; Kinetic transitions ; Local equilibrium ; Materials ; Materials Science ; Paraequilibrium ; Physics ; Thin films</subject><ispartof>Acta materialia, 2015-03, Vol.86, p.286-294</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-db688d4c7d2c2a3be59276dc92a94369cdfd7f37d24492b911ef03bff9f446093</citedby><cites>FETCH-LOGICAL-c376t-db688d4c7d2c2a3be59276dc92a94369cdfd7f37d24492b911ef03bff9f446093</cites><orcidid>0000-0003-2244-3761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645414009355$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01614324$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panahi, D.</creatorcontrib><creatorcontrib>Van Landeghem, H.</creatorcontrib><creatorcontrib>Hutchinson, C.R.</creatorcontrib><creatorcontrib>Purdy, G.</creatorcontrib><creatorcontrib>Zurob, H.S.</creatorcontrib><title>New insights into the limit for non-partitioning ferrite growth</title><title>Acta materialia</title><description>The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LENP) model. The ferrite layer formed below the LENP limit consisted of columnar grains and showed continuous, parabolic growth kinetics. In contrast, ferrite growth above the LENP limit showed two distinct stages. Initially, a thin layer of columnar ferrite grains formed and grew rapidly for a short period of time. In the second stage, the ferrite layer appeared to increase in thickness at a very low rate. The slow growth of the ferrite layer was associated with a strong depletion of carbon content in austenite as well as the formation of new ferrite grains as opposed to the growth of existing grains. The evolution of the carbon concentration in austenite was used to infer the operating interfacial contact conditions as a function of time. The evolution of the interfacial austenite conditions is suggested to penetrate deep into the two-phase region as predicted by ferrite growth theories that account for free-energy dissipation during the austenite-to-ferrite phase transformation.</description><subject>Austenite</subject><subject>Carbon</subject><subject>Condensed Matter</subject><subject>Constraining</subject><subject>Contact</subject><subject>Decarburization</subject><subject>Dissipation</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Ferrite</subject><subject>Ferrite growth</subject><subject>Grains</subject><subject>Kinetic transitions</subject><subject>Local equilibrium</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Paraequilibrium</subject><subject>Physics</subject><subject>Thin films</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqXwCUhZwiLBrzjxqqoqoEgVbGBtOX40rtK42G4r_h5XqdiymquZM3c0N8vuISghgPRpUwoZxVbEEgFISohKAJuLbAKbGheIVPgyaVyxgpKKXGc3IWwAgKgmYJLN3vUxt0Ow6y6GJKLLY6fz3m5tzI3z-eCGYid8tNG6wQ7r3GjvbdT52rtj7G6zKyP6oO_OdZp9vTx_LpbF6uP1bTFfFRLXNBaqpU2jiKwVkkjgVlcM1VRJhgQjmDKpjKoNTmNCGGoZhNoA3BrDDCEUMDzNHkffTvR85-1W-B_uhOXL-YqfeikISDAiB5jYh5Hdefe91yHyrQ1S970YtNsHDmlds6oCGCS0GlHpXQhemz9vCPgpXL7h53D5KVwOUbrUpL3ZuKfTzwerPQ_S6kFqZb2WkStn_3H4BeoDhK4</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Panahi, D.</creator><creator>Van Landeghem, H.</creator><creator>Hutchinson, C.R.</creator><creator>Purdy, G.</creator><creator>Zurob, H.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2244-3761</orcidid></search><sort><creationdate>20150301</creationdate><title>New insights into the limit for non-partitioning ferrite growth</title><author>Panahi, D. ; Van Landeghem, H. ; Hutchinson, C.R. ; Purdy, G. ; Zurob, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-db688d4c7d2c2a3be59276dc92a94369cdfd7f37d24492b911ef03bff9f446093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Austenite</topic><topic>Carbon</topic><topic>Condensed Matter</topic><topic>Constraining</topic><topic>Contact</topic><topic>Decarburization</topic><topic>Dissipation</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Ferrite</topic><topic>Ferrite growth</topic><topic>Grains</topic><topic>Kinetic transitions</topic><topic>Local equilibrium</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Paraequilibrium</topic><topic>Physics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panahi, D.</creatorcontrib><creatorcontrib>Van Landeghem, H.</creatorcontrib><creatorcontrib>Hutchinson, C.R.</creatorcontrib><creatorcontrib>Purdy, G.</creatorcontrib><creatorcontrib>Zurob, H.S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panahi, D.</au><au>Van Landeghem, H.</au><au>Hutchinson, C.R.</au><au>Purdy, G.</au><au>Zurob, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the limit for non-partitioning ferrite growth</atitle><jtitle>Acta materialia</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>86</volume><spage>286</spage><epage>294</epage><pages>286-294</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LENP) model. The ferrite layer formed below the LENP limit consisted of columnar grains and showed continuous, parabolic growth kinetics. In contrast, ferrite growth above the LENP limit showed two distinct stages. Initially, a thin layer of columnar ferrite grains formed and grew rapidly for a short period of time. In the second stage, the ferrite layer appeared to increase in thickness at a very low rate. The slow growth of the ferrite layer was associated with a strong depletion of carbon content in austenite as well as the formation of new ferrite grains as opposed to the growth of existing grains. The evolution of the carbon concentration in austenite was used to infer the operating interfacial contact conditions as a function of time. The evolution of the interfacial austenite conditions is suggested to penetrate deep into the two-phase region as predicted by ferrite growth theories that account for free-energy dissipation during the austenite-to-ferrite phase transformation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.12.018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2244-3761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2015-03, Vol.86, p.286-294 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01614324v1 |
source | Elsevier ScienceDirect Journals |
subjects | Austenite Carbon Condensed Matter Constraining Contact Decarburization Dissipation Engineering Sciences Evolution Ferrite Ferrite growth Grains Kinetic transitions Local equilibrium Materials Materials Science Paraequilibrium Physics Thin films |
title | New insights into the limit for non-partitioning ferrite growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20limit%20for%20non-partitioning%20ferrite%20growth&rft.jtitle=Acta%20materialia&rft.au=Panahi,%20D.&rft.date=2015-03-01&rft.volume=86&rft.spage=286&rft.epage=294&rft.pages=286-294&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.12.018&rft_dat=%3Cproquest_hal_p%3E1677955030%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677955030&rft_id=info:pmid/&rft_els_id=S1359645414009355&rfr_iscdi=true |