Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage
Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomogra...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | |
container_start_page | 367 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 695 |
creator | le Graverend, Jean-Briac Adrien, Jérome Cormier, Jonathan |
description | Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models. |
doi_str_mv | 10.1016/j.msea.2017.03.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01613952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317304008</els_id><sourcerecordid>1943248394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhC0EEsPAC3CyxImDs3acX8RltVrYlUZwWSRuVsfuTDzKxMF2dglPw6PiaBBHTi25vyq1qwh5K3gmuKiuTtk5IGQ5F3XGZcYb-YzsRFNLVrSyek52vM0FK3krX5JXIZw456Lg5Y78vv3Jgo0L_c48rDS6szt6mIeV6gE86Ije_oJo3URdT2fnXaJXahZvpyMd7HFgEc8zeoiLR6o94kztRIF-sayDgIaGRI7ItF9DhJGGZaPH0a0f6IN7Am_oMhn0aTmZzfRpgEhtoAbOcMTX5EUPY8A3f-eefPt0-3Bzxw5fP9_fXB-YLvImMqPbqilMXcuqrnWV923XNMDryhRFrkvTtVroFnRjeNmbosu7lEUP2FVln6RC7sn7i-8Ao5q9PYNflQOr7q4PantLMQvZlvnjxr67sLN3PxYMUZ3c4qd0nhJtIfOikWnsSX6hdAoteOz_2QquttbUSW2tqa01xaVKrSXRx4sI018fLXoVtMVJo7EedVTG2f_J_wBl7KPf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943248394</pqid></control><display><type>article</type><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</creator><creatorcontrib>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</creatorcontrib><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.03.083</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coarsening ; Computed tomography ; Concentration (composition) ; Continuum Damage Mechanics ; Creep ; Creep tests ; Damage ; Damage accumulation ; Damage assessment ; Engineering Sciences ; Evolution ; High temperature ; Mechanics ; Mechanics of materials ; Metals creep ; Microstructure ; Nickel alloys ; Nickel base alloys ; Nickel-based single crystal superalloy ; Plastic deformation ; Porosity ; Service life assessment ; Shearing ; Single crystals ; Strain rate ; Tomography ; Void ; X-ray tomography</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 17, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</citedby><cites>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</cites><orcidid>0000-0003-0341-3559 ; 0000-0002-4613-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509317304008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01613952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>le Graverend, Jean-Briac</creatorcontrib><creatorcontrib>Adrien, Jérome</creatorcontrib><creatorcontrib>Cormier, Jonathan</creatorcontrib><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</description><subject>Coarsening</subject><subject>Computed tomography</subject><subject>Concentration (composition)</subject><subject>Continuum Damage Mechanics</subject><subject>Creep</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>High temperature</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Metals creep</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Nickel-based single crystal superalloy</subject><subject>Plastic deformation</subject><subject>Porosity</subject><subject>Service life assessment</subject><subject>Shearing</subject><subject>Single crystals</subject><subject>Strain rate</subject><subject>Tomography</subject><subject>Void</subject><subject>X-ray tomography</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhC0EEsPAC3CyxImDs3acX8RltVrYlUZwWSRuVsfuTDzKxMF2dglPw6PiaBBHTi25vyq1qwh5K3gmuKiuTtk5IGQ5F3XGZcYb-YzsRFNLVrSyek52vM0FK3krX5JXIZw456Lg5Y78vv3Jgo0L_c48rDS6szt6mIeV6gE86Ije_oJo3URdT2fnXaJXahZvpyMd7HFgEc8zeoiLR6o94kztRIF-sayDgIaGRI7ItF9DhJGGZaPH0a0f6IN7Am_oMhn0aTmZzfRpgEhtoAbOcMTX5EUPY8A3f-eefPt0-3Bzxw5fP9_fXB-YLvImMqPbqilMXcuqrnWV923XNMDryhRFrkvTtVroFnRjeNmbosu7lEUP2FVln6RC7sn7i-8Ao5q9PYNflQOr7q4PantLMQvZlvnjxr67sLN3PxYMUZ3c4qd0nhJtIfOikWnsSX6hdAoteOz_2QquttbUSW2tqa01xaVKrSXRx4sI018fLXoVtMVJo7EedVTG2f_J_wBl7KPf</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>le Graverend, Jean-Briac</creator><creator>Adrien, Jérome</creator><creator>Cormier, Jonathan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0341-3559</orcidid><orcidid>https://orcid.org/0000-0002-4613-4472</orcidid></search><sort><creationdate>20170517</creationdate><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><author>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coarsening</topic><topic>Computed tomography</topic><topic>Concentration (composition)</topic><topic>Continuum Damage Mechanics</topic><topic>Creep</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>High temperature</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Metals creep</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Nickel-based single crystal superalloy</topic><topic>Plastic deformation</topic><topic>Porosity</topic><topic>Service life assessment</topic><topic>Shearing</topic><topic>Single crystals</topic><topic>Strain rate</topic><topic>Tomography</topic><topic>Void</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>le Graverend, Jean-Briac</creatorcontrib><creatorcontrib>Adrien, Jérome</creatorcontrib><creatorcontrib>Cormier, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>le Graverend, Jean-Briac</au><au>Adrien, Jérome</au><au>Cormier, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-05-17</date><risdate>2017</risdate><volume>695</volume><spage>367</spage><epage>378</epage><pages>367-378</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.03.083</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0341-3559</orcidid><orcidid>https://orcid.org/0000-0002-4613-4472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01613952v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Coarsening Computed tomography Concentration (composition) Continuum Damage Mechanics Creep Creep tests Damage Damage accumulation Damage assessment Engineering Sciences Evolution High temperature Mechanics Mechanics of materials Metals creep Microstructure Nickel alloys Nickel base alloys Nickel-based single crystal superalloy Plastic deformation Porosity Service life assessment Shearing Single crystals Strain rate Tomography Void X-ray tomography |
title | Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex-situ%20X-ray%20tomography%20characterization%20of%20porosity%20during%20high-temperature%20creep%20in%20a%20Ni-based%20single-crystal%20superalloy:%20Toward%20understanding%20what%20is%20damage&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=le%20Graverend,%20Jean-Briac&rft.date=2017-05-17&rft.volume=695&rft.spage=367&rft.epage=378&rft.pages=367-378&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.03.083&rft_dat=%3Cproquest_hal_p%3E1943248394%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943248394&rft_id=info:pmid/&rft_els_id=S0921509317304008&rfr_iscdi=true |