Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage

Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378
Hauptverfasser: le Graverend, Jean-Briac, Adrien, Jérome, Cormier, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue
container_start_page 367
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 695
creator le Graverend, Jean-Briac
Adrien, Jérome
Cormier, Jonathan
description Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.
doi_str_mv 10.1016/j.msea.2017.03.083
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01613952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317304008</els_id><sourcerecordid>1943248394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhC0EEsPAC3CyxImDs3acX8RltVrYlUZwWSRuVsfuTDzKxMF2dglPw6PiaBBHTi25vyq1qwh5K3gmuKiuTtk5IGQ5F3XGZcYb-YzsRFNLVrSyek52vM0FK3krX5JXIZw456Lg5Y78vv3Jgo0L_c48rDS6szt6mIeV6gE86Ije_oJo3URdT2fnXaJXahZvpyMd7HFgEc8zeoiLR6o94kztRIF-sayDgIaGRI7ItF9DhJGGZaPH0a0f6IN7Am_oMhn0aTmZzfRpgEhtoAbOcMTX5EUPY8A3f-eefPt0-3Bzxw5fP9_fXB-YLvImMqPbqilMXcuqrnWV923XNMDryhRFrkvTtVroFnRjeNmbosu7lEUP2FVln6RC7sn7i-8Ao5q9PYNflQOr7q4PantLMQvZlvnjxr67sLN3PxYMUZ3c4qd0nhJtIfOikWnsSX6hdAoteOz_2QquttbUSW2tqa01xaVKrSXRx4sI018fLXoVtMVJo7EedVTG2f_J_wBl7KPf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943248394</pqid></control><display><type>article</type><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</creator><creatorcontrib>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</creatorcontrib><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.03.083</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coarsening ; Computed tomography ; Concentration (composition) ; Continuum Damage Mechanics ; Creep ; Creep tests ; Damage ; Damage accumulation ; Damage assessment ; Engineering Sciences ; Evolution ; High temperature ; Mechanics ; Mechanics of materials ; Metals creep ; Microstructure ; Nickel alloys ; Nickel base alloys ; Nickel-based single crystal superalloy ; Plastic deformation ; Porosity ; Service life assessment ; Shearing ; Single crystals ; Strain rate ; Tomography ; Void ; X-ray tomography</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 17, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</citedby><cites>FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</cites><orcidid>0000-0003-0341-3559 ; 0000-0002-4613-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509317304008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01613952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>le Graverend, Jean-Briac</creatorcontrib><creatorcontrib>Adrien, Jérome</creatorcontrib><creatorcontrib>Cormier, Jonathan</creatorcontrib><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</description><subject>Coarsening</subject><subject>Computed tomography</subject><subject>Concentration (composition)</subject><subject>Continuum Damage Mechanics</subject><subject>Creep</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>High temperature</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Metals creep</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Nickel-based single crystal superalloy</subject><subject>Plastic deformation</subject><subject>Porosity</subject><subject>Service life assessment</subject><subject>Shearing</subject><subject>Single crystals</subject><subject>Strain rate</subject><subject>Tomography</subject><subject>Void</subject><subject>X-ray tomography</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhC0EEsPAC3CyxImDs3acX8RltVrYlUZwWSRuVsfuTDzKxMF2dglPw6PiaBBHTi25vyq1qwh5K3gmuKiuTtk5IGQ5F3XGZcYb-YzsRFNLVrSyek52vM0FK3krX5JXIZw456Lg5Y78vv3Jgo0L_c48rDS6szt6mIeV6gE86Ije_oJo3URdT2fnXaJXahZvpyMd7HFgEc8zeoiLR6o94kztRIF-sayDgIaGRI7ItF9DhJGGZaPH0a0f6IN7Am_oMhn0aTmZzfRpgEhtoAbOcMTX5EUPY8A3f-eefPt0-3Bzxw5fP9_fXB-YLvImMqPbqilMXcuqrnWV923XNMDryhRFrkvTtVroFnRjeNmbosu7lEUP2FVln6RC7sn7i-8Ao5q9PYNflQOr7q4PantLMQvZlvnjxr67sLN3PxYMUZ3c4qd0nhJtIfOikWnsSX6hdAoteOz_2QquttbUSW2tqa01xaVKrSXRx4sI018fLXoVtMVJo7EedVTG2f_J_wBl7KPf</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>le Graverend, Jean-Briac</creator><creator>Adrien, Jérome</creator><creator>Cormier, Jonathan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0341-3559</orcidid><orcidid>https://orcid.org/0000-0002-4613-4472</orcidid></search><sort><creationdate>20170517</creationdate><title>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</title><author>le Graverend, Jean-Briac ; Adrien, Jérome ; Cormier, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dc9684d773677c62f9b88a076d442c5db9c1c9ac8d05fd4b2b093faeb65fc9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coarsening</topic><topic>Computed tomography</topic><topic>Concentration (composition)</topic><topic>Continuum Damage Mechanics</topic><topic>Creep</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>High temperature</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Metals creep</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Nickel-based single crystal superalloy</topic><topic>Plastic deformation</topic><topic>Porosity</topic><topic>Service life assessment</topic><topic>Shearing</topic><topic>Single crystals</topic><topic>Strain rate</topic><topic>Tomography</topic><topic>Void</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>le Graverend, Jean-Briac</creatorcontrib><creatorcontrib>Adrien, Jérome</creatorcontrib><creatorcontrib>Cormier, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>le Graverend, Jean-Briac</au><au>Adrien, Jérome</au><au>Cormier, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-05-17</date><risdate>2017</risdate><volume>695</volume><spage>367</spage><epage>378</epage><pages>367-378</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000°C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100°C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.03.083</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0341-3559</orcidid><orcidid>https://orcid.org/0000-0002-4613-4472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-05, Vol.695, p.367-378
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_hal_01613952v1
source Elsevier ScienceDirect Journals Complete
subjects Coarsening
Computed tomography
Concentration (composition)
Continuum Damage Mechanics
Creep
Creep tests
Damage
Damage accumulation
Damage assessment
Engineering Sciences
Evolution
High temperature
Mechanics
Mechanics of materials
Metals creep
Microstructure
Nickel alloys
Nickel base alloys
Nickel-based single crystal superalloy
Plastic deformation
Porosity
Service life assessment
Shearing
Single crystals
Strain rate
Tomography
Void
X-ray tomography
title Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex-situ%20X-ray%20tomography%20characterization%20of%20porosity%20during%20high-temperature%20creep%20in%20a%20Ni-based%20single-crystal%20superalloy:%20Toward%20understanding%20what%20is%20damage&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=le%20Graverend,%20Jean-Briac&rft.date=2017-05-17&rft.volume=695&rft.spage=367&rft.epage=378&rft.pages=367-378&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.03.083&rft_dat=%3Cproquest_hal_p%3E1943248394%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943248394&rft_id=info:pmid/&rft_els_id=S0921509317304008&rfr_iscdi=true