Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance

Aims/hypothesis Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2017-08, Vol.60 (8), p.1491-1501
Hauptverfasser: Kenny, Helena C., Rudwill, Floriane, Breen, Laura, Salanova, Michele, Blottner, Dieter, Heise, Tim, Heer, Martina, Blanc, Stephane, O’Gorman, Donal J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1501
container_issue 8
container_start_page 1491
container_title Diabetologia
container_volume 60
creator Kenny, Helena C.
Rudwill, Floriane
Breen, Laura
Salanova, Michele
Blottner, Dieter
Heise, Tim
Heer, Martina
Blanc, Stephane
O’Gorman, Donal J.
description Aims/hypothesis Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. Methods Participants ( n  = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic–euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). Results Body mass (−3.2 ± 0.5 kg vs −2.8 ± 0.4 kg for CON and RVE, respectively, p  
doi_str_mv 10.1007/s00125-017-4298-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01613882v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899121362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-6edbc473eac89644f0b7b44a2ab442cdf10800c78f0553a844a77d1632f5bdb13</originalsourceid><addsrcrecordid>eNp1kcFu1TAQRS0Eoo_CB7BBltjAIjB2nNhZlgpopSexAYmd5TgT6tZxip0E6JIvx2leK4TExh7NnLkz9iXkOYM3DEC-TQCMVwUwWQjeqOLmAdkxUfICBFcPyW4tF0zVX4_Ik5QuAaCsRP2YHHFV5bgRO_L7HXY0YpqoCbeBS5NbkC6ujWZyY6D4E6N1CekcFnSehnFBT70LV4m2OP1ADDRdocfJeDrMyXqkg5tGezGGLrqc7Odgb6XWES6kOTcfRplg8Sl51Buf8NnhPiZfPrz_fHpW7D99PD892RdWiGYqauxaK2SJxqqmFqKHVrZCGG7yyW3XM1AAVqoeqqo0Kpek7Fhd8r5qu5aVx-T1pnthvL6ObjDxlx6N02cne73mgNWsVIovK_tqY6_j-H3O36MHlyx6bwKOc9JMNQ3jrKx5Rl_-g16Ocwz5JZo1TEgJlVgF2UbZOKYUsb_fgIFezdSbmXkJqVcz9U3ueXFQntsBu_uOO_cywDcg5VL4hvGv0f9V_QMduaw3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914770541</pqid></control><display><type>article</type><title>Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kenny, Helena C. ; Rudwill, Floriane ; Breen, Laura ; Salanova, Michele ; Blottner, Dieter ; Heise, Tim ; Heer, Martina ; Blanc, Stephane ; O’Gorman, Donal J.</creator><creatorcontrib>Kenny, Helena C. ; Rudwill, Floriane ; Breen, Laura ; Salanova, Michele ; Blottner, Dieter ; Heise, Tim ; Heer, Martina ; Blanc, Stephane ; O’Gorman, Donal J.</creatorcontrib><description>Aims/hypothesis Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. Methods Participants ( n  = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic–euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). Results Body mass (−3.2 ± 0.5 kg vs −2.8 ± 0.4 kg for CON and RVE, respectively, p  &lt; 0.05), fat-free mass (−2.9 ± 0.5 kg vs −2.7 ± 0.5 kg, p  &lt; 0.05) and peak oxygen consumption ( V ⋅ O 2 peak ) (10–15%, p  &lt; 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 vs 0.03 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM −1 [pmol l −1 ] min −1 ). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. Conclusions / interpretation Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-017-4298-z</identifier><identifier>PMID: 28500394</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorptiometry, Photon ; Adaptation ; Adenine ; Adult ; Bed Rest ; Body composition ; Body Composition - physiology ; Body mass ; Citrate synthase ; Cross-Over Studies ; Disease resistance ; Dual energy X-ray absorptiometry ; Electron transport ; Energy balance ; Energy Metabolism - physiology ; Environmental Sciences ; Exercise ; Fat-free body mass ; Glucose Clamp Technique ; Human Physiology ; Humans ; Hypotheses ; Immobilization ; Insulin ; Insulin resistance ; Insulin Resistance - physiology ; Internal Medicine ; Male ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Muscle, Skeletal - physiology ; Oxidative phosphorylation ; Oxygen consumption ; Phosphorylation ; Respiration ; Sarcopenia ; Skeletal muscle ; Translocase</subject><ispartof>Diabetologia, 2017-08, Vol.60 (8), p.1491-1501</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Diabetologia is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-6edbc473eac89644f0b7b44a2ab442cdf10800c78f0553a844a77d1632f5bdb13</citedby><cites>FETCH-LOGICAL-c449t-6edbc473eac89644f0b7b44a2ab442cdf10800c78f0553a844a77d1632f5bdb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-017-4298-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-017-4298-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01613882$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kenny, Helena C.</creatorcontrib><creatorcontrib>Rudwill, Floriane</creatorcontrib><creatorcontrib>Breen, Laura</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Heise, Tim</creatorcontrib><creatorcontrib>Heer, Martina</creatorcontrib><creatorcontrib>Blanc, Stephane</creatorcontrib><creatorcontrib>O’Gorman, Donal J.</creatorcontrib><title>Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. Methods Participants ( n  = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic–euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). Results Body mass (−3.2 ± 0.5 kg vs −2.8 ± 0.4 kg for CON and RVE, respectively, p  &lt; 0.05), fat-free mass (−2.9 ± 0.5 kg vs −2.7 ± 0.5 kg, p  &lt; 0.05) and peak oxygen consumption ( V ⋅ O 2 peak ) (10–15%, p  &lt; 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 vs 0.03 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM −1 [pmol l −1 ] min −1 ). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. Conclusions / interpretation Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.</description><subject>Absorptiometry, Photon</subject><subject>Adaptation</subject><subject>Adenine</subject><subject>Adult</subject><subject>Bed Rest</subject><subject>Body composition</subject><subject>Body Composition - physiology</subject><subject>Body mass</subject><subject>Citrate synthase</subject><subject>Cross-Over Studies</subject><subject>Disease resistance</subject><subject>Dual energy X-ray absorptiometry</subject><subject>Electron transport</subject><subject>Energy balance</subject><subject>Energy Metabolism - physiology</subject><subject>Environmental Sciences</subject><subject>Exercise</subject><subject>Fat-free body mass</subject><subject>Glucose Clamp Technique</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Immobilization</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen consumption</subject><subject>Phosphorylation</subject><subject>Respiration</subject><subject>Sarcopenia</subject><subject>Skeletal muscle</subject><subject>Translocase</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kcFu1TAQRS0Eoo_CB7BBltjAIjB2nNhZlgpopSexAYmd5TgT6tZxip0E6JIvx2leK4TExh7NnLkz9iXkOYM3DEC-TQCMVwUwWQjeqOLmAdkxUfICBFcPyW4tF0zVX4_Ik5QuAaCsRP2YHHFV5bgRO_L7HXY0YpqoCbeBS5NbkC6ujWZyY6D4E6N1CekcFnSehnFBT70LV4m2OP1ADDRdocfJeDrMyXqkg5tGezGGLrqc7Odgb6XWES6kOTcfRplg8Sl51Buf8NnhPiZfPrz_fHpW7D99PD892RdWiGYqauxaK2SJxqqmFqKHVrZCGG7yyW3XM1AAVqoeqqo0Kpek7Fhd8r5qu5aVx-T1pnthvL6ObjDxlx6N02cne73mgNWsVIovK_tqY6_j-H3O36MHlyx6bwKOc9JMNQ3jrKx5Rl_-g16Ocwz5JZo1TEgJlVgF2UbZOKYUsb_fgIFezdSbmXkJqVcz9U3ueXFQntsBu_uOO_cywDcg5VL4hvGv0f9V_QMduaw3</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kenny, Helena C.</creator><creator>Rudwill, Floriane</creator><creator>Breen, Laura</creator><creator>Salanova, Michele</creator><creator>Blottner, Dieter</creator><creator>Heise, Tim</creator><creator>Heer, Martina</creator><creator>Blanc, Stephane</creator><creator>O’Gorman, Donal J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20170801</creationdate><title>Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance</title><author>Kenny, Helena C. ; Rudwill, Floriane ; Breen, Laura ; Salanova, Michele ; Blottner, Dieter ; Heise, Tim ; Heer, Martina ; Blanc, Stephane ; O’Gorman, Donal J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-6edbc473eac89644f0b7b44a2ab442cdf10800c78f0553a844a77d1632f5bdb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorptiometry, Photon</topic><topic>Adaptation</topic><topic>Adenine</topic><topic>Adult</topic><topic>Bed Rest</topic><topic>Body composition</topic><topic>Body Composition - physiology</topic><topic>Body mass</topic><topic>Citrate synthase</topic><topic>Cross-Over Studies</topic><topic>Disease resistance</topic><topic>Dual energy X-ray absorptiometry</topic><topic>Electron transport</topic><topic>Energy balance</topic><topic>Energy Metabolism - physiology</topic><topic>Environmental Sciences</topic><topic>Exercise</topic><topic>Fat-free body mass</topic><topic>Glucose Clamp Technique</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Immobilization</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen consumption</topic><topic>Phosphorylation</topic><topic>Respiration</topic><topic>Sarcopenia</topic><topic>Skeletal muscle</topic><topic>Translocase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenny, Helena C.</creatorcontrib><creatorcontrib>Rudwill, Floriane</creatorcontrib><creatorcontrib>Breen, Laura</creatorcontrib><creatorcontrib>Salanova, Michele</creatorcontrib><creatorcontrib>Blottner, Dieter</creatorcontrib><creatorcontrib>Heise, Tim</creatorcontrib><creatorcontrib>Heer, Martina</creatorcontrib><creatorcontrib>Blanc, Stephane</creatorcontrib><creatorcontrib>O’Gorman, Donal J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenny, Helena C.</au><au>Rudwill, Floriane</au><au>Breen, Laura</au><au>Salanova, Michele</au><au>Blottner, Dieter</au><au>Heise, Tim</au><au>Heer, Martina</au><au>Blanc, Stephane</au><au>O’Gorman, Donal J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>60</volume><issue>8</issue><spage>1491</spage><epage>1501</epage><pages>1491-1501</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. Methods Participants ( n  = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic–euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). Results Body mass (−3.2 ± 0.5 kg vs −2.8 ± 0.4 kg for CON and RVE, respectively, p  &lt; 0.05), fat-free mass (−2.9 ± 0.5 kg vs −2.7 ± 0.5 kg, p  &lt; 0.05) and peak oxygen consumption ( V ⋅ O 2 peak ) (10–15%, p  &lt; 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 vs 0.03 ± 0.002 mg kgFFM −1 [pmol l −1 ] min −1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM −1 [pmol l −1 ] min −1 ). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. Conclusions / interpretation Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28500394</pmid><doi>10.1007/s00125-017-4298-z</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2017-08, Vol.60 (8), p.1491-1501
issn 0012-186X
1432-0428
language eng
recordid cdi_hal_primary_oai_HAL_hal_01613882v1
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Absorptiometry, Photon
Adaptation
Adenine
Adult
Bed Rest
Body composition
Body Composition - physiology
Body mass
Citrate synthase
Cross-Over Studies
Disease resistance
Dual energy X-ray absorptiometry
Electron transport
Energy balance
Energy Metabolism - physiology
Environmental Sciences
Exercise
Fat-free body mass
Glucose Clamp Technique
Human Physiology
Humans
Hypotheses
Immobilization
Insulin
Insulin resistance
Insulin Resistance - physiology
Internal Medicine
Male
Medicine
Medicine & Public Health
Metabolic Diseases
Metabolism
Mitochondria
Mitochondria - metabolism
Muscle, Skeletal - physiology
Oxidative phosphorylation
Oxygen consumption
Phosphorylation
Respiration
Sarcopenia
Skeletal muscle
Translocase
title Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bed%20rest%20and%20resistive%20vibration%20exercise%20unveil%20novel%20links%20between%20skeletal%20muscle%20mitochondrial%20function%20and%20insulin%20resistance&rft.jtitle=Diabetologia&rft.au=Kenny,%20Helena%20C.&rft.date=2017-08-01&rft.volume=60&rft.issue=8&rft.spage=1491&rft.epage=1501&rft.pages=1491-1501&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-017-4298-z&rft_dat=%3Cproquest_hal_p%3E1899121362%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914770541&rft_id=info:pmid/28500394&rfr_iscdi=true