Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization

We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using 13C–13C recoupling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-10, Vol.89 (19), p.10201-10207
Hauptverfasser: Leroy, César, Aussenac, Fabien, Bonhomme-Coury, Laure, Osaka, Akiyoshi, Hayakawa, Satoshi, Babonneau, Florence, Coelho-Diogo, Cristina, Bonhomme, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10207
container_issue 19
container_start_page 10201
container_title Analytical chemistry (Washington)
container_volume 89
creator Leroy, César
Aussenac, Fabien
Bonhomme-Coury, Laure
Osaka, Akiyoshi
Hayakawa, Satoshi
Babonneau, Florence
Coelho-Diogo, Cristina
Bonhomme, Christian
description We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using 13C–13C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude). DNP is efficiently mediated by quasi one-dimensional spin diffusion through the hydroxyl columns present in the CHAp structure (thought of as “highways” for spin diffusion). For spherical nanoparticles and ϕ < 100 nm, it is numerically shown that spin diffusion allows their study as a whole. Most importantly, we demonstrate also that the DNP study at 100 K leads to data which are comparable to data obtained at room temperature (in terms of spin dynamics and line shape resolution). Finally, all 2D DNP experiments can be interpreted in terms of domains exhibiting well identified types of substitution: local order and carbonate clustering are clearly favored.
doi_str_mv 10.1021/acs.analchem.7b01332
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01611666v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973009127</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-ace20e2e498a8c7be9518be35d6ab971055b23733da004f1782549b4c5e1de5f3</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi1ERYfCP0DIEhtYZLi240fYjcpjUEc8BIildeM4aqokntoJkP56Es20SF2wsmSd77PvPYQ8Y7BmwNlrdGmNPbbu0ndrXQITgj8gKyY5ZMoY_pCsAEBkXAOckscpXQEwBkw9IqfcGM2N5CvycztVMfyZcI9DM_j0hl74iX4b4uiGMWJLv44-DU3oE8W-ops-_fYx0TqGjr6deuwaRz-NrvUY6ZfQYmxucMGfkJMa2-SfHs8z8uP9u-_n22z3-cPH880uw7wQQ4bOc_Dc54VB43TpC8lM6YWsFJaFZiBlyYUWokKAvGbacJkXZe6kZ5WXtTgjrw69l9jafWw6jJMN2NjtZmeXu3lgxpRSv9jMvjyw-xiul7Fs1yTn2xZ7H8ZkWSEUV2CkmtEX99CrMMZ52wulBUDBuJ6p_EC5GFKKvr77AQO7SLKzJHsryR4lzbHnx_Kx7Hx1F7q1MgNwAJb4v4f_1_kXgk-gDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973009127</pqid></control><display><type>article</type><title>Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization</title><source>American Chemical Society Journals</source><creator>Leroy, César ; Aussenac, Fabien ; Bonhomme-Coury, Laure ; Osaka, Akiyoshi ; Hayakawa, Satoshi ; Babonneau, Florence ; Coelho-Diogo, Cristina ; Bonhomme, Christian</creator><creatorcontrib>Leroy, César ; Aussenac, Fabien ; Bonhomme-Coury, Laure ; Osaka, Akiyoshi ; Hayakawa, Satoshi ; Babonneau, Florence ; Coelho-Diogo, Cristina ; Bonhomme, Christian</creatorcontrib><description>We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using 13C–13C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude). DNP is efficiently mediated by quasi one-dimensional spin diffusion through the hydroxyl columns present in the CHAp structure (thought of as “highways” for spin diffusion). For spherical nanoparticles and ϕ &lt; 100 nm, it is numerically shown that spin diffusion allows their study as a whole. Most importantly, we demonstrate also that the DNP study at 100 K leads to data which are comparable to data obtained at room temperature (in terms of spin dynamics and line shape resolution). Finally, all 2D DNP experiments can be interpreted in terms of domains exhibiting well identified types of substitution: local order and carbonate clustering are clearly favored.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b01332</identifier><identifier>PMID: 28872852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbonates ; Chemical Sciences ; Chemistry ; Clustering ; Diffusion ; Efficiency ; Experiments ; Highways ; Hydroxyapatite ; Line shape ; Minerals ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Polarization ; Spin dynamics ; Temperature</subject><ispartof>Analytical chemistry (Washington), 2017-10, Vol.89 (19), p.10201-10207</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 3, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-ace20e2e498a8c7be9518be35d6ab971055b23733da004f1782549b4c5e1de5f3</citedby><cites>FETCH-LOGICAL-a493t-ace20e2e498a8c7be9518be35d6ab971055b23733da004f1782549b4c5e1de5f3</cites><orcidid>0000-0003-0802-6961 ; 0009-0002-2308-9661 ; 0000-0002-2599-7383 ; 0000-0002-0733-9686 ; 0000-0002-6961-1331 ; 0000-0002-9013-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b01332$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b01332$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28872852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01611666$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroy, César</creatorcontrib><creatorcontrib>Aussenac, Fabien</creatorcontrib><creatorcontrib>Bonhomme-Coury, Laure</creatorcontrib><creatorcontrib>Osaka, Akiyoshi</creatorcontrib><creatorcontrib>Hayakawa, Satoshi</creatorcontrib><creatorcontrib>Babonneau, Florence</creatorcontrib><creatorcontrib>Coelho-Diogo, Cristina</creatorcontrib><creatorcontrib>Bonhomme, Christian</creatorcontrib><title>Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using 13C–13C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude). DNP is efficiently mediated by quasi one-dimensional spin diffusion through the hydroxyl columns present in the CHAp structure (thought of as “highways” for spin diffusion). For spherical nanoparticles and ϕ &lt; 100 nm, it is numerically shown that spin diffusion allows their study as a whole. Most importantly, we demonstrate also that the DNP study at 100 K leads to data which are comparable to data obtained at room temperature (in terms of spin dynamics and line shape resolution). Finally, all 2D DNP experiments can be interpreted in terms of domains exhibiting well identified types of substitution: local order and carbonate clustering are clearly favored.</description><subject>Carbonates</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Clustering</subject><subject>Diffusion</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Highways</subject><subject>Hydroxyapatite</subject><subject>Line shape</subject><subject>Minerals</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polarization</subject><subject>Spin dynamics</subject><subject>Temperature</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAURi1ERYfCP0DIEhtYZLi240fYjcpjUEc8BIildeM4aqokntoJkP56Es20SF2wsmSd77PvPYQ8Y7BmwNlrdGmNPbbu0ndrXQITgj8gKyY5ZMoY_pCsAEBkXAOckscpXQEwBkw9IqfcGM2N5CvycztVMfyZcI9DM_j0hl74iX4b4uiGMWJLv44-DU3oE8W-ops-_fYx0TqGjr6deuwaRz-NrvUY6ZfQYmxucMGfkJMa2-SfHs8z8uP9u-_n22z3-cPH880uw7wQQ4bOc_Dc54VB43TpC8lM6YWsFJaFZiBlyYUWokKAvGbacJkXZe6kZ5WXtTgjrw69l9jafWw6jJMN2NjtZmeXu3lgxpRSv9jMvjyw-xiul7Fs1yTn2xZ7H8ZkWSEUV2CkmtEX99CrMMZ52wulBUDBuJ6p_EC5GFKKvr77AQO7SLKzJHsryR4lzbHnx_Kx7Hx1F7q1MgNwAJb4v4f_1_kXgk-gDg</recordid><startdate>20171003</startdate><enddate>20171003</enddate><creator>Leroy, César</creator><creator>Aussenac, Fabien</creator><creator>Bonhomme-Coury, Laure</creator><creator>Osaka, Akiyoshi</creator><creator>Hayakawa, Satoshi</creator><creator>Babonneau, Florence</creator><creator>Coelho-Diogo, Cristina</creator><creator>Bonhomme, Christian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0802-6961</orcidid><orcidid>https://orcid.org/0009-0002-2308-9661</orcidid><orcidid>https://orcid.org/0000-0002-2599-7383</orcidid><orcidid>https://orcid.org/0000-0002-0733-9686</orcidid><orcidid>https://orcid.org/0000-0002-6961-1331</orcidid><orcidid>https://orcid.org/0000-0002-9013-5552</orcidid></search><sort><creationdate>20171003</creationdate><title>Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization</title><author>Leroy, César ; Aussenac, Fabien ; Bonhomme-Coury, Laure ; Osaka, Akiyoshi ; Hayakawa, Satoshi ; Babonneau, Florence ; Coelho-Diogo, Cristina ; Bonhomme, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-ace20e2e498a8c7be9518be35d6ab971055b23733da004f1782549b4c5e1de5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbonates</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Clustering</topic><topic>Diffusion</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Highways</topic><topic>Hydroxyapatite</topic><topic>Line shape</topic><topic>Minerals</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polarization</topic><topic>Spin dynamics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroy, César</creatorcontrib><creatorcontrib>Aussenac, Fabien</creatorcontrib><creatorcontrib>Bonhomme-Coury, Laure</creatorcontrib><creatorcontrib>Osaka, Akiyoshi</creatorcontrib><creatorcontrib>Hayakawa, Satoshi</creatorcontrib><creatorcontrib>Babonneau, Florence</creatorcontrib><creatorcontrib>Coelho-Diogo, Cristina</creatorcontrib><creatorcontrib>Bonhomme, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroy, César</au><au>Aussenac, Fabien</au><au>Bonhomme-Coury, Laure</au><au>Osaka, Akiyoshi</au><au>Hayakawa, Satoshi</au><au>Babonneau, Florence</au><au>Coelho-Diogo, Cristina</au><au>Bonhomme, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-10-03</date><risdate>2017</risdate><volume>89</volume><issue>19</issue><spage>10201</spage><epage>10207</epage><pages>10201-10207</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using 13C–13C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude). DNP is efficiently mediated by quasi one-dimensional spin diffusion through the hydroxyl columns present in the CHAp structure (thought of as “highways” for spin diffusion). For spherical nanoparticles and ϕ &lt; 100 nm, it is numerically shown that spin diffusion allows their study as a whole. Most importantly, we demonstrate also that the DNP study at 100 K leads to data which are comparable to data obtained at room temperature (in terms of spin dynamics and line shape resolution). Finally, all 2D DNP experiments can be interpreted in terms of domains exhibiting well identified types of substitution: local order and carbonate clustering are clearly favored.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28872852</pmid><doi>10.1021/acs.analchem.7b01332</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0802-6961</orcidid><orcidid>https://orcid.org/0009-0002-2308-9661</orcidid><orcidid>https://orcid.org/0000-0002-2599-7383</orcidid><orcidid>https://orcid.org/0000-0002-0733-9686</orcidid><orcidid>https://orcid.org/0000-0002-6961-1331</orcidid><orcidid>https://orcid.org/0000-0002-9013-5552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-10, Vol.89 (19), p.10201-10207
issn 0003-2700
1520-6882
language eng
recordid cdi_hal_primary_oai_HAL_hal_01611666v1
source American Chemical Society Journals
subjects Carbonates
Chemical Sciences
Chemistry
Clustering
Diffusion
Efficiency
Experiments
Highways
Hydroxyapatite
Line shape
Minerals
Nanoparticles
NMR
Nuclear magnetic resonance
Polarization
Spin dynamics
Temperature
title Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatites:%20Key%20Structural%20Questions%20and%20Answers%20from%20Dynamic%20Nuclear%20Polarization&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Leroy,%20Ce%CC%81sar&rft.date=2017-10-03&rft.volume=89&rft.issue=19&rft.spage=10201&rft.epage=10207&rft.pages=10201-10207&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b01332&rft_dat=%3Cproquest_hal_p%3E1973009127%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973009127&rft_id=info:pmid/28872852&rfr_iscdi=true