Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential

Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modelling and simulation in materials science and engineering 2017-05, Vol.25 (5), p.1-19
Hauptverfasser: Mahendran, S, Carrez, P, Groh, S, Cordier, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 5
container_start_page 1
container_title Modelling and simulation in materials science and engineering
container_volume 25
creator Mahendran, S
Carrez, P
Groh, S
Cordier, P
description Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.
doi_str_mv 10.1088/1361-651X/aa6efa
format Article
fullrecord <record><control><sourceid>hal_iop_j</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01606755v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01606755v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h259t-be2329d5765760f89b080c25cff1b383412e6085782d3a094b0c06085a9495223</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKd3jzkqWPeSNGniTeePCZMdnODJkLbpltE2o8mE_fe2TDwJDx58-Xwfjw9ClwRuCUg5IUyQRHDyOTFG2MocodFfdIxGoARPgCl2is5C2AAAlzQboa9HF2pfmOh8ixtf2rp27Qq7Fr-t6LtbpLjyXYi2c9HeYdNiE33jiiQUprY4xF25x7kJtsR9P64tXs4eCN76aNvoTH2OTipTB3vxu8fo4_lpOZ0l88XL6_R-nqwpVzHJLWVUlTwT_UAlVQ4SCsqLqiI5kywl1AqQPJO0ZAZUmkMBQ2BUqjilbIyuD3fXptbbzjWm22tvnJ7dz_WQAREgMs6_Sc_eHFjnt3rjd13bf6YJ6MGjHqTpQZo-eOzxq3_wJjRBU665Bp4CUL0tK_YDSbNyWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</creator><creatorcontrib>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</creatorcontrib><description>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa6efa</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomistic simulation ; core shell model ; crystal plasticity ; dislocations ; ionic materials ; Life Sciences ; olivine</subject><ispartof>Modelling and simulation in materials science and engineering, 2017-05, Vol.25 (5), p.1-19</ispartof><rights>2017 IOP Publishing Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1295-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-651X/aa6efa/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01606755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahendran, S</creatorcontrib><creatorcontrib>Carrez, P</creatorcontrib><creatorcontrib>Groh, S</creatorcontrib><creatorcontrib>Cordier, P</creatorcontrib><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</description><subject>atomistic simulation</subject><subject>core shell model</subject><subject>crystal plasticity</subject><subject>dislocations</subject><subject>ionic materials</subject><subject>Life Sciences</subject><subject>olivine</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkM9LwzAUx4MoOKd3jzkqWPeSNGniTeePCZMdnODJkLbpltE2o8mE_fe2TDwJDx58-Xwfjw9ClwRuCUg5IUyQRHDyOTFG2MocodFfdIxGoARPgCl2is5C2AAAlzQboa9HF2pfmOh8ixtf2rp27Qq7Fr-t6LtbpLjyXYi2c9HeYdNiE33jiiQUprY4xF25x7kJtsR9P64tXs4eCN76aNvoTH2OTipTB3vxu8fo4_lpOZ0l88XL6_R-nqwpVzHJLWVUlTwT_UAlVQ4SCsqLqiI5kywl1AqQPJO0ZAZUmkMBQ2BUqjilbIyuD3fXptbbzjWm22tvnJ7dz_WQAREgMs6_Sc_eHFjnt3rjd13bf6YJ6MGjHqTpQZo-eOzxq3_wJjRBU665Bp4CUL0tK_YDSbNyWg</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Mahendran, S</creator><creator>Carrez, P</creator><creator>Groh, S</creator><creator>Cordier, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1295-9377</orcidid></search><sort><creationdate>20170523</creationdate><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><author>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h259t-be2329d5765760f89b080c25cff1b383412e6085782d3a094b0c06085a9495223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomistic simulation</topic><topic>core shell model</topic><topic>crystal plasticity</topic><topic>dislocations</topic><topic>ionic materials</topic><topic>Life Sciences</topic><topic>olivine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahendran, S</creatorcontrib><creatorcontrib>Carrez, P</creatorcontrib><creatorcontrib>Groh, S</creatorcontrib><creatorcontrib>Cordier, P</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendran, S</au><au>Carrez, P</au><au>Groh, S</au><au>Cordier, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa6efa</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1295-9377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2017-05, Vol.25 (5), p.1-19
issn 0965-0393
1361-651X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01606755v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atomistic simulation
core shell model
crystal plasticity
dislocations
ionic materials
Life Sciences
olivine
title Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20modelling%20in%20Mg2SiO4%20forsterite:%20an%20atomic-scale%20study%20based%20on%20the%20THB1%20potential&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Mahendran,%20S&rft.date=2017-05-23&rft.volume=25&rft.issue=5&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa6efa&rft_dat=%3Chal_iop_j%3Eoai_HAL_hal_01606755v1%3C/hal_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true