Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential
Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our...
Gespeichert in:
Veröffentlicht in: | Modelling and simulation in materials science and engineering 2017-05, Vol.25 (5), p.1-19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Modelling and simulation in materials science and engineering |
container_volume | 25 |
creator | Mahendran, S Carrez, P Groh, S Cordier, P |
description | Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism. |
doi_str_mv | 10.1088/1361-651X/aa6efa |
format | Article |
fullrecord | <record><control><sourceid>hal_iop_j</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01606755v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01606755v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h259t-be2329d5765760f89b080c25cff1b383412e6085782d3a094b0c06085a9495223</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4MoOKd3jzkqWPeSNGniTeePCZMdnODJkLbpltE2o8mE_fe2TDwJDx58-Xwfjw9ClwRuCUg5IUyQRHDyOTFG2MocodFfdIxGoARPgCl2is5C2AAAlzQboa9HF2pfmOh8ixtf2rp27Qq7Fr-t6LtbpLjyXYi2c9HeYdNiE33jiiQUprY4xF25x7kJtsR9P64tXs4eCN76aNvoTH2OTipTB3vxu8fo4_lpOZ0l88XL6_R-nqwpVzHJLWVUlTwT_UAlVQ4SCsqLqiI5kywl1AqQPJO0ZAZUmkMBQ2BUqjilbIyuD3fXptbbzjWm22tvnJ7dz_WQAREgMs6_Sc_eHFjnt3rjd13bf6YJ6MGjHqTpQZo-eOzxq3_wJjRBU665Bp4CUL0tK_YDSbNyWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</creator><creatorcontrib>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</creatorcontrib><description>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa6efa</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomistic simulation ; core shell model ; crystal plasticity ; dislocations ; ionic materials ; Life Sciences ; olivine</subject><ispartof>Modelling and simulation in materials science and engineering, 2017-05, Vol.25 (5), p.1-19</ispartof><rights>2017 IOP Publishing Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1295-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-651X/aa6efa/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01606755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahendran, S</creatorcontrib><creatorcontrib>Carrez, P</creatorcontrib><creatorcontrib>Groh, S</creatorcontrib><creatorcontrib>Cordier, P</creatorcontrib><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</description><subject>atomistic simulation</subject><subject>core shell model</subject><subject>crystal plasticity</subject><subject>dislocations</subject><subject>ionic materials</subject><subject>Life Sciences</subject><subject>olivine</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkM9LwzAUx4MoOKd3jzkqWPeSNGniTeePCZMdnODJkLbpltE2o8mE_fe2TDwJDx58-Xwfjw9ClwRuCUg5IUyQRHDyOTFG2MocodFfdIxGoARPgCl2is5C2AAAlzQboa9HF2pfmOh8ixtf2rp27Qq7Fr-t6LtbpLjyXYi2c9HeYdNiE33jiiQUprY4xF25x7kJtsR9P64tXs4eCN76aNvoTH2OTipTB3vxu8fo4_lpOZ0l88XL6_R-nqwpVzHJLWVUlTwT_UAlVQ4SCsqLqiI5kywl1AqQPJO0ZAZUmkMBQ2BUqjilbIyuD3fXptbbzjWm22tvnJ7dz_WQAREgMs6_Sc_eHFjnt3rjd13bf6YJ6MGjHqTpQZo-eOzxq3_wJjRBU665Bp4CUL0tK_YDSbNyWg</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Mahendran, S</creator><creator>Carrez, P</creator><creator>Groh, S</creator><creator>Cordier, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1295-9377</orcidid></search><sort><creationdate>20170523</creationdate><title>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</title><author>Mahendran, S ; Carrez, P ; Groh, S ; Cordier, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h259t-be2329d5765760f89b080c25cff1b383412e6085782d3a094b0c06085a9495223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomistic simulation</topic><topic>core shell model</topic><topic>crystal plasticity</topic><topic>dislocations</topic><topic>ionic materials</topic><topic>Life Sciences</topic><topic>olivine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahendran, S</creatorcontrib><creatorcontrib>Carrez, P</creatorcontrib><creatorcontrib>Groh, S</creatorcontrib><creatorcontrib>Cordier, P</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendran, S</au><au>Carrez, P</au><au>Groh, S</au><au>Cordier, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>Knowledge of the deformation mechanisms of (Mg,Fe)2SiO4 olivine is important for the understanding of flow and seismic anisotropy in the Earth's upper mantle. We report here a numerical modelling at the atomic scale of dislocation structures and slip system properties in Mg2SiO4 forsterite. Our study focuses on screw dislocations of [100] and [001] Burgers vectors. Computations are performed using the so-called THB1 empirical potential set for Mg2SiO4. Results of dislocation core structures highlight the primary importance of the (010) plane for [100] slip dislocations. For [001] dislocations, we confirm the occurrence of a stable narrow core that evolves into transient planar configurations to glide in (100) and (010). Such configurations suggest a locking-unlocking mechanism.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa6efa</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1295-9377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-0393 |
ispartof | Modelling and simulation in materials science and engineering, 2017-05, Vol.25 (5), p.1-19 |
issn | 0965-0393 1361-651X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01606755v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | atomistic simulation core shell model crystal plasticity dislocations ionic materials Life Sciences olivine |
title | Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20modelling%20in%20Mg2SiO4%20forsterite:%20an%20atomic-scale%20study%20based%20on%20the%20THB1%20potential&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Mahendran,%20S&rft.date=2017-05-23&rft.volume=25&rft.issue=5&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa6efa&rft_dat=%3Chal_iop_j%3Eoai_HAL_hal_01606755v1%3C/hal_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |