Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures

Inland surface waters in tropical environments play a major role in the water and carbon cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are commonly used to provide quantitative estimates of surface water extent from regional to global scales. However, som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2017-05, Vol.9 (5), p.350-26
Hauptverfasser: Parrens, Marie, Al Bitar, Ahmad, Frappart, Frédéric, Papa, Fabrice, Calmant, Stephane, Crétaux, Jean-François, Wigneron, Jean-Pierre, Kerr, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 5
container_start_page 350
container_title Water (Basel)
container_volume 9
creator Parrens, Marie
Al Bitar, Ahmad
Frappart, Frédéric
Papa, Fabrice
Calmant, Stephane
Crétaux, Jean-François
Wigneron, Jean-Pierre
Kerr, Yann
description Inland surface waters in tropical environments play a major role in the water and carbon cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are commonly used to provide quantitative estimates of surface water extent from regional to global scales. However, some of these estimates are unable to detect water under dense vegetation and/or in the presence of cloud coverage. To overcome these limitations, the brightness temperature data at L-band frequency from the Soil Moisture and Ocean Salinity (SMOS) mission are used here to estimate flood extent in a contextual radiative transfer model over the Amazon Basin. At this frequency, the signal is highly sensitive to the standing water above the ground, and the signal provides information from deeper vegetation density than higher-frequencies. Three-day and (25 km × 25 km) resolution maps of water fraction extent are produced from 2010 to 2015. The dynamic water surface extent estimates are compared to altimeter data (Jason-2), land cover classification maps (IGBP, GlobeCover and ESA CCI) and the dynamic water surface product (GIEMS). The relationships between the water surfaces, precipitation and in situ discharge data are examined. The results show a high correlation between water fraction estimated by SMOS and water levels from Jason-2 (R > 0.98). Good spatial agreements for the land cover classifications and the water cycle are obtained.
doi_str_mv 10.3390/w9050350
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01602588v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A787764544</galeid><sourcerecordid>A787764544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c7dda2c8124ce0d5bcfe1cde76e4628c00fed31326d8eaa017d19a0737b192543</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVWtVARI_ARLvZRDwF7ba-8x0AaQgpBKKo7WYM8mRll7sTdF8OtxGkDMHObrzejNTFUdMXrCeUtPn1oqKZf0S7VXU8UnQgj29ZP_vTrM-YEWEa3Wku5VT9cwDD4sya_nAL235A5GTGSWwI4-BrIJroTjCskixcFbWJM_4AOZxYR5zCR2_4vTHl5i8BDIGeRS7lLsye31zS05S365GgPmTBbYD5hg3JTWg-pbB-uMh292v_o7-704v5zMby6uzqfzieVNPU6scg5qq1ktLFIn722HzDpUDYqm1pbSDh1nvG6cRgDKlGMtlHXVPWtrKfh-dbybu4K1GZLvIT2bCN5cTudmm6OsobXU-h8r2B877JDi46asZx7iJoVCz7CWUallK1RBnexQS1ij8aGLYzlWUYflfjFg50t-qrRSjZBiS-HnrsGmmHPC7oMHo2b7NvP-Nv4KR3GI1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910585947</pqid></control><display><type>article</type><title>Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Parrens, Marie ; Al Bitar, Ahmad ; Frappart, Frédéric ; Papa, Fabrice ; Calmant, Stephane ; Crétaux, Jean-François ; Wigneron, Jean-Pierre ; Kerr, Yann</creator><creatorcontrib>Parrens, Marie ; Al Bitar, Ahmad ; Frappart, Frédéric ; Papa, Fabrice ; Calmant, Stephane ; Crétaux, Jean-François ; Wigneron, Jean-Pierre ; Kerr, Yann</creatorcontrib><description>Inland surface waters in tropical environments play a major role in the water and carbon cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are commonly used to provide quantitative estimates of surface water extent from regional to global scales. However, some of these estimates are unable to detect water under dense vegetation and/or in the presence of cloud coverage. To overcome these limitations, the brightness temperature data at L-band frequency from the Soil Moisture and Ocean Salinity (SMOS) mission are used here to estimate flood extent in a contextual radiative transfer model over the Amazon Basin. At this frequency, the signal is highly sensitive to the standing water above the ground, and the signal provides information from deeper vegetation density than higher-frequencies. Three-day and (25 km × 25 km) resolution maps of water fraction extent are produced from 2010 to 2015. The dynamic water surface extent estimates are compared to altimeter data (Jason-2), land cover classification maps (IGBP, GlobeCover and ESA CCI) and the dynamic water surface product (GIEMS). The relationships between the water surfaces, precipitation and in situ discharge data are examined. The results show a high correlation between water fraction estimated by SMOS and water levels from Jason-2 (R &gt; 0.98). Good spatial agreements for the land cover classifications and the water cycle are obtained.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w9050350</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Altimeters ; Aquatic resources ; Brightness ; Brightness temperature ; Carbon cycle (Biogeochemistry) ; Classification ; Correlation ; Estimates ; Forests ; France ; Hydrologic cycle ; Hydrologic data ; Information dissemination ; Land use ; Life Sciences ; Mapping ; Moisture ; Precipitation ; Radiative transfer ; Rain ; Rain forests ; Rainfall ; Rainforests ; Remote sensing ; River basins ; Salinity ; Salinity effects ; Soil moisture ; Soil temperature ; Surface water ; Temperature effects ; Tropical environments ; Vegetation ; Water levels ; Water scarcity ; Wavelengths</subject><ispartof>Water (Basel), 2017-05, Vol.9 (5), p.350-26</ispartof><rights>COPYRIGHT 2017 MDPI AG</rights><rights>Copyright MDPI AG 2017</rights><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c7dda2c8124ce0d5bcfe1cde76e4628c00fed31326d8eaa017d19a0737b192543</citedby><cites>FETCH-LOGICAL-c362t-c7dda2c8124ce0d5bcfe1cde76e4628c00fed31326d8eaa017d19a0737b192543</cites><orcidid>0000-0002-1756-1096 ; 0000-0001-6305-6253 ; 0000-0001-6352-1717 ; 0000-0002-4661-8274 ; 0000-0001-6439-4174 ; 0000-0001-5345-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01602588$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Parrens, Marie</creatorcontrib><creatorcontrib>Al Bitar, Ahmad</creatorcontrib><creatorcontrib>Frappart, Frédéric</creatorcontrib><creatorcontrib>Papa, Fabrice</creatorcontrib><creatorcontrib>Calmant, Stephane</creatorcontrib><creatorcontrib>Crétaux, Jean-François</creatorcontrib><creatorcontrib>Wigneron, Jean-Pierre</creatorcontrib><creatorcontrib>Kerr, Yann</creatorcontrib><title>Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures</title><title>Water (Basel)</title><description>Inland surface waters in tropical environments play a major role in the water and carbon cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are commonly used to provide quantitative estimates of surface water extent from regional to global scales. However, some of these estimates are unable to detect water under dense vegetation and/or in the presence of cloud coverage. To overcome these limitations, the brightness temperature data at L-band frequency from the Soil Moisture and Ocean Salinity (SMOS) mission are used here to estimate flood extent in a contextual radiative transfer model over the Amazon Basin. At this frequency, the signal is highly sensitive to the standing water above the ground, and the signal provides information from deeper vegetation density than higher-frequencies. Three-day and (25 km × 25 km) resolution maps of water fraction extent are produced from 2010 to 2015. The dynamic water surface extent estimates are compared to altimeter data (Jason-2), land cover classification maps (IGBP, GlobeCover and ESA CCI) and the dynamic water surface product (GIEMS). The relationships between the water surfaces, precipitation and in situ discharge data are examined. The results show a high correlation between water fraction estimated by SMOS and water levels from Jason-2 (R &gt; 0.98). Good spatial agreements for the land cover classifications and the water cycle are obtained.</description><subject>Altimeters</subject><subject>Aquatic resources</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Classification</subject><subject>Correlation</subject><subject>Estimates</subject><subject>Forests</subject><subject>France</subject><subject>Hydrologic cycle</subject><subject>Hydrologic data</subject><subject>Information dissemination</subject><subject>Land use</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Moisture</subject><subject>Precipitation</subject><subject>Radiative transfer</subject><subject>Rain</subject><subject>Rain forests</subject><subject>Rainfall</subject><subject>Rainforests</subject><subject>Remote sensing</subject><subject>River basins</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Surface water</subject><subject>Temperature effects</subject><subject>Tropical environments</subject><subject>Vegetation</subject><subject>Water levels</subject><subject>Water scarcity</subject><subject>Wavelengths</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1PGzEQXVWtVARI_ARLvZRDwF7ba-8x0AaQgpBKKo7WYM8mRll7sTdF8OtxGkDMHObrzejNTFUdMXrCeUtPn1oqKZf0S7VXU8UnQgj29ZP_vTrM-YEWEa3Wku5VT9cwDD4sya_nAL235A5GTGSWwI4-BrIJroTjCskixcFbWJM_4AOZxYR5zCR2_4vTHl5i8BDIGeRS7lLsye31zS05S365GgPmTBbYD5hg3JTWg-pbB-uMh292v_o7-704v5zMby6uzqfzieVNPU6scg5qq1ktLFIn722HzDpUDYqm1pbSDh1nvG6cRgDKlGMtlHXVPWtrKfh-dbybu4K1GZLvIT2bCN5cTudmm6OsobXU-h8r2B877JDi46asZx7iJoVCz7CWUallK1RBnexQS1ij8aGLYzlWUYflfjFg50t-qrRSjZBiS-HnrsGmmHPC7oMHo2b7NvP-Nv4KR3GI1w</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>Parrens, Marie</creator><creator>Al Bitar, Ahmad</creator><creator>Frappart, Frédéric</creator><creator>Papa, Fabrice</creator><creator>Calmant, Stephane</creator><creator>Crétaux, Jean-François</creator><creator>Wigneron, Jean-Pierre</creator><creator>Kerr, Yann</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1756-1096</orcidid><orcidid>https://orcid.org/0000-0001-6305-6253</orcidid><orcidid>https://orcid.org/0000-0001-6352-1717</orcidid><orcidid>https://orcid.org/0000-0002-4661-8274</orcidid><orcidid>https://orcid.org/0000-0001-6439-4174</orcidid><orcidid>https://orcid.org/0000-0001-5345-3618</orcidid></search><sort><creationdate>20170517</creationdate><title>Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures</title><author>Parrens, Marie ; Al Bitar, Ahmad ; Frappart, Frédéric ; Papa, Fabrice ; Calmant, Stephane ; Crétaux, Jean-François ; Wigneron, Jean-Pierre ; Kerr, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c7dda2c8124ce0d5bcfe1cde76e4628c00fed31326d8eaa017d19a0737b192543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Altimeters</topic><topic>Aquatic resources</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Classification</topic><topic>Correlation</topic><topic>Estimates</topic><topic>Forests</topic><topic>France</topic><topic>Hydrologic cycle</topic><topic>Hydrologic data</topic><topic>Information dissemination</topic><topic>Land use</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Moisture</topic><topic>Precipitation</topic><topic>Radiative transfer</topic><topic>Rain</topic><topic>Rain forests</topic><topic>Rainfall</topic><topic>Rainforests</topic><topic>Remote sensing</topic><topic>River basins</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Surface water</topic><topic>Temperature effects</topic><topic>Tropical environments</topic><topic>Vegetation</topic><topic>Water levels</topic><topic>Water scarcity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrens, Marie</creatorcontrib><creatorcontrib>Al Bitar, Ahmad</creatorcontrib><creatorcontrib>Frappart, Frédéric</creatorcontrib><creatorcontrib>Papa, Fabrice</creatorcontrib><creatorcontrib>Calmant, Stephane</creatorcontrib><creatorcontrib>Crétaux, Jean-François</creatorcontrib><creatorcontrib>Wigneron, Jean-Pierre</creatorcontrib><creatorcontrib>Kerr, Yann</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrens, Marie</au><au>Al Bitar, Ahmad</au><au>Frappart, Frédéric</au><au>Papa, Fabrice</au><au>Calmant, Stephane</au><au>Crétaux, Jean-François</au><au>Wigneron, Jean-Pierre</au><au>Kerr, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures</atitle><jtitle>Water (Basel)</jtitle><date>2017-05-17</date><risdate>2017</risdate><volume>9</volume><issue>5</issue><spage>350</spage><epage>26</epage><pages>350-26</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Inland surface waters in tropical environments play a major role in the water and carbon cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are commonly used to provide quantitative estimates of surface water extent from regional to global scales. However, some of these estimates are unable to detect water under dense vegetation and/or in the presence of cloud coverage. To overcome these limitations, the brightness temperature data at L-band frequency from the Soil Moisture and Ocean Salinity (SMOS) mission are used here to estimate flood extent in a contextual radiative transfer model over the Amazon Basin. At this frequency, the signal is highly sensitive to the standing water above the ground, and the signal provides information from deeper vegetation density than higher-frequencies. Three-day and (25 km × 25 km) resolution maps of water fraction extent are produced from 2010 to 2015. The dynamic water surface extent estimates are compared to altimeter data (Jason-2), land cover classification maps (IGBP, GlobeCover and ESA CCI) and the dynamic water surface product (GIEMS). The relationships between the water surfaces, precipitation and in situ discharge data are examined. The results show a high correlation between water fraction estimated by SMOS and water levels from Jason-2 (R &gt; 0.98). Good spatial agreements for the land cover classifications and the water cycle are obtained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w9050350</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1756-1096</orcidid><orcidid>https://orcid.org/0000-0001-6305-6253</orcidid><orcidid>https://orcid.org/0000-0001-6352-1717</orcidid><orcidid>https://orcid.org/0000-0002-4661-8274</orcidid><orcidid>https://orcid.org/0000-0001-6439-4174</orcidid><orcidid>https://orcid.org/0000-0001-5345-3618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2017-05, Vol.9 (5), p.350-26
issn 2073-4441
2073-4441
language eng
recordid cdi_hal_primary_oai_HAL_hal_01602588v1
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Altimeters
Aquatic resources
Brightness
Brightness temperature
Carbon cycle (Biogeochemistry)
Classification
Correlation
Estimates
Forests
France
Hydrologic cycle
Hydrologic data
Information dissemination
Land use
Life Sciences
Mapping
Moisture
Precipitation
Radiative transfer
Rain
Rain forests
Rainfall
Rainforests
Remote sensing
River basins
Salinity
Salinity effects
Soil moisture
Soil temperature
Surface water
Temperature effects
Tropical environments
Vegetation
Water levels
Water scarcity
Wavelengths
title Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Dynamic%20Water%20Fraction%20under%20the%20Tropical%20Rain%20Forests%20of%20the%20Amazonian%20Basin%20from%20SMOS%20Brightness%20Temperatures&rft.jtitle=Water%20(Basel)&rft.au=Parrens,%20Marie&rft.date=2017-05-17&rft.volume=9&rft.issue=5&rft.spage=350&rft.epage=26&rft.pages=350-26&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w9050350&rft_dat=%3Cgale_hal_p%3EA787764544%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910585947&rft_id=info:pmid/&rft_galeid=A787764544&rfr_iscdi=true