DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY
Let ψ be a multidimensional random variable. We show that the set of probability measures ℚ such that the ℚ-martingale S t ℚ = E ℚ [ ψ | F t ] has the Martingale Representation Property (MRP) is either empty or dense in L∞ -norm. The proof is based on a related result involving analytic fields of te...
Gespeichert in:
Veröffentlicht in: | IDEAS Working Paper Series from RePEc 2019-07, Vol.47 (4), p.2563-2581 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2581 |
---|---|
container_issue | 4 |
container_start_page | 2563 |
container_title | IDEAS Working Paper Series from RePEc |
container_volume | 47 |
creator | Kramkov, Dmitry Pulido, Sergio |
description | Let ψ be a multidimensional random variable. We show that the set of probability measures ℚ such that the ℚ-martingale
S
t
ℚ
=
E
ℚ
[
ψ
|
F
t
]
has the Martingale Representation Property (MRP) is either empty or dense in L∞
-norm. The proof is based on a related result involving analytic fields of terminal conditions (ψ(x))x∈U
and probability measures (ℚ(x))x∈U
over an open set U. Namely, we show that the set of points x ∈ U such that St(x) = Eℚ(x)[ψ(x)|Ft] does not have the MRP, either coincides with U or has Lebesgue measure zero. Our study is motivated by the problem of endogenous completeness in financial economics. |
doi_str_mv | 10.1214/18-AOP1321 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01598651v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26754256</jstor_id><sourcerecordid>26754256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-80563f062624fd391e669dcead04563be02e78496083449176b9a39e3716b4203</originalsourceid><addsrcrecordid>eNo9kEFPg0AQhTdGE2v14t2ExJMm6M7usuwead0WEgoEtmpPG9rS2KZKhdbEfy9I09NM5n3zMvMQugX8BATYMwjbixOgBM5QjwAXtpDs_Rz1MJZggyvFJbqq6w3GmLsu66HXFxVlgZ5Z8cjSvrIypds2SeOBNwjCVpkoL5umKrPeAu3_QxMv1UE09kJlpSppJBVpTwdx1O4lKtWza3Sxyrd1cXOsfTQdKT307TAeB0MvtBfUgb0tsMPpCnPCCVstqYSCc7lcFPkSs0aZF5gUrmCSY0EZk-DyucypLKgLfM4Ipn300Pl-5Fuzq9afefVrynxtfC807QyDIwV34Ic07H3H7qry-1DUe7MpD9VXc54hjhBYEO7IhnrsqEVV1nVVrE62gE2bsQFhjhk38F0Hb-p9WZ1Iwl2HkeaBP48gbVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588082659</pqid></control><display><type>article</type><title>DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Kramkov, Dmitry ; Pulido, Sergio</creator><creatorcontrib>Kramkov, Dmitry ; Pulido, Sergio</creatorcontrib><description>Let ψ be a multidimensional random variable. We show that the set of probability measures ℚ such that the ℚ-martingale
S
t
ℚ
=
E
ℚ
[
ψ
|
F
t
]
has the Martingale Representation Property (MRP) is either empty or dense in L∞
-norm. The proof is based on a related result involving analytic fields of terminal conditions (ψ(x))x∈U
and probability measures (ℚ(x))x∈U
over an open set U. Namely, we show that the set of points x ∈ U such that St(x) = Eℚ(x)[ψ(x)|Ft] does not have the MRP, either coincides with U or has Lebesgue measure zero. Our study is motivated by the problem of endogenous completeness in financial economics.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/18-AOP1321</identifier><language>eng</language><publisher>St. Louis: Institute of Mathematical Statistics</publisher><subject>General Finance ; Mathematics ; Probability ; Quantitative Finance ; Random variables</subject><ispartof>IDEAS Working Paper Series from RePEc, 2019-07, Vol.47 (4), p.2563-2581</ispartof><rights>Institute of Mathematical Statistics, 2019</rights><rights>2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://research.stlouisfed.org/research_terms.html .</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-80563f062624fd391e669dcead04563be02e78496083449176b9a39e3716b4203</citedby><cites>FETCH-LOGICAL-c351t-80563f062624fd391e669dcead04563be02e78496083449176b9a39e3716b4203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26754256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26754256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27915,27916,58008,58012,58241,58245</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01598651$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramkov, Dmitry</creatorcontrib><creatorcontrib>Pulido, Sergio</creatorcontrib><title>DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY</title><title>IDEAS Working Paper Series from RePEc</title><description>Let ψ be a multidimensional random variable. We show that the set of probability measures ℚ such that the ℚ-martingale
S
t
ℚ
=
E
ℚ
[
ψ
|
F
t
]
has the Martingale Representation Property (MRP) is either empty or dense in L∞
-norm. The proof is based on a related result involving analytic fields of terminal conditions (ψ(x))x∈U
and probability measures (ℚ(x))x∈U
over an open set U. Namely, we show that the set of points x ∈ U such that St(x) = Eℚ(x)[ψ(x)|Ft] does not have the MRP, either coincides with U or has Lebesgue measure zero. Our study is motivated by the problem of endogenous completeness in financial economics.</description><subject>General Finance</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Quantitative Finance</subject><subject>Random variables</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AAFGM</sourceid><sourceid>ABUWG</sourceid><sourceid>ADZZV</sourceid><sourceid>AFKRA</sourceid><sourceid>AGAJT</sourceid><sourceid>AQTIP</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>PQCXX</sourceid><recordid>eNo9kEFPg0AQhTdGE2v14t2ExJMm6M7usuwead0WEgoEtmpPG9rS2KZKhdbEfy9I09NM5n3zMvMQugX8BATYMwjbixOgBM5QjwAXtpDs_Rz1MJZggyvFJbqq6w3GmLsu66HXFxVlgZ5Z8cjSvrIypds2SeOBNwjCVpkoL5umKrPeAu3_QxMv1UE09kJlpSppJBVpTwdx1O4lKtWza3Sxyrd1cXOsfTQdKT307TAeB0MvtBfUgb0tsMPpCnPCCVstqYSCc7lcFPkSs0aZF5gUrmCSY0EZk-DyucypLKgLfM4Ipn300Pl-5Fuzq9afefVrynxtfC807QyDIwV34Ic07H3H7qry-1DUe7MpD9VXc54hjhBYEO7IhnrsqEVV1nVVrE62gE2bsQFhjhk38F0Hb-p9WZ1Iwl2HkeaBP48gbVk</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Kramkov, Dmitry</creator><creator>Pulido, Sergio</creator><general>Institute of Mathematical Statistics</general><general>Federal Reserve Bank of St. Louis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>AAFGM</scope><scope>ABLUL</scope><scope>ABPUF</scope><scope>ABSSA</scope><scope>ABUWG</scope><scope>ACIOU</scope><scope>ADZZV</scope><scope>AFKRA</scope><scope>AGAJT</scope><scope>AGSBL</scope><scope>AJNOY</scope><scope>AQTIP</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BOUDT</scope><scope>CBHQV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQCXX</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20190701</creationdate><title>DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY</title><author>Kramkov, Dmitry ; Pulido, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-80563f062624fd391e669dcead04563be02e78496083449176b9a39e3716b4203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>General Finance</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Quantitative Finance</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramkov, Dmitry</creatorcontrib><creatorcontrib>Pulido, Sergio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IDEAS Working Paper Series from RePEc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramkov, Dmitry</au><au>Pulido, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY</atitle><jtitle>IDEAS Working Paper Series from RePEc</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>47</volume><issue>4</issue><spage>2563</spage><epage>2581</epage><pages>2563-2581</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Let ψ be a multidimensional random variable. We show that the set of probability measures ℚ such that the ℚ-martingale
S
t
ℚ
=
E
ℚ
[
ψ
|
F
t
]
has the Martingale Representation Property (MRP) is either empty or dense in L∞
-norm. The proof is based on a related result involving analytic fields of terminal conditions (ψ(x))x∈U
and probability measures (ℚ(x))x∈U
over an open set U. Namely, we show that the set of points x ∈ U such that St(x) = Eℚ(x)[ψ(x)|Ft] does not have the MRP, either coincides with U or has Lebesgue measure zero. Our study is motivated by the problem of endogenous completeness in financial economics.</abstract><cop>St. Louis</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOP1321</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | IDEAS Working Paper Series from RePEc, 2019-07, Vol.47 (4), p.2563-2581 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01598651v2 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | General Finance Mathematics Probability Quantitative Finance Random variables |
title | DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE MARTINGALE REPRESENTATION PROPERTY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DENSITY%20OF%20THE%20SET%20OF%20PROBABILITY%20MEASURES%20WITH%20THE%20MARTINGALE%20REPRESENTATION%20PROPERTY&rft.jtitle=IDEAS%20Working%20Paper%20Series%20from%20RePEc&rft.au=Kramkov,%20Dmitry&rft.date=2019-07-01&rft.volume=47&rft.issue=4&rft.spage=2563&rft.epage=2581&rft.pages=2563-2581&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/18-AOP1321&rft_dat=%3Cjstor_hal_p%3E26754256%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588082659&rft_id=info:pmid/&rft_jstor_id=26754256&rfr_iscdi=true |