Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning

We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2015-01, Vol.6 (12), p.686-6812
Hauptverfasser: Bouleau, E, Saint-Bonnet, P, Mentink-Vigier, F, Takahashi, H, Jacquot, J.-F, Bardet, M, Aussenac, F, Purea, A, Engelke, F, Hediger, S, Lee, D, De Paëpe, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6812
container_issue 12
container_start_page 686
container_title Chemical science (Cambridge)
container_volume 6
creator Bouleau, E
Saint-Bonnet, P
Mentink-Vigier, F
Takahashi, H
Jacquot, J.-F
Bardet, M
Aussenac, F
Purea, A
Engelke, F
Hediger, S
Lee, D
De Paëpe, G
description We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool. The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.
doi_str_mv 10.1039/c5sc02819a
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01587521v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924886458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</originalsourceid><addsrcrecordid>eNqFkkuP0zAUhSMEYkbDbNiDzA6QAn7EibNBqipgkMpDPNaW49w0Ro4dfJOi8utJ6VAeC_DGls_n43t9nGV3GX3CqKifWomWcsVqcyM757RgeSlFffO05vQsu0T8TJchBJO8up2dcVXJqq74eYbvZuxd2JI3r98ThIBucjs37Yl3g5uQzHgQ230wg7MkzNaDSWSM3iT3zUwuBvLVTT2xPiK0uY9xJDbt4xbCwvfg3TwQNMPogeDoQljs7mS3OuMRLq_ni-zTi-cf11f55u3LV-vVJrdSFFPe2Q54xygtSibB8kYoKetCAuXUNG3JFWVVDYZVvKSmbYABhQLKVrSqhcaIi-zZ0XecmwFaC2FKxusxucGkvY7G6T-V4Hq9jTstJVVlpRaDR0eD_q9jV6uNPuxRJpeX5GzHFvbh9WUpfpkBJz04tOC9CRBn1KzmhVJlIdX_USVkKSpeH1wfH1GbImKC7lQGo_qQv17LD-sf-a8W-P7v_Z7Qn2kvwIMjkNCe1F8fSI9ttzD3_sWI72QDwu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835637291</pqid></control><display><type>article</type><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><source>PubMed Central(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</creator><creatorcontrib>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</creatorcontrib><description>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool. The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c5sc02819a</identifier><identifier>PMID: 28757972</identifier><language>eng</language><publisher>England: The Royal Society of Chemistry</publisher><subject>Chemistry ; Dynamics ; Helium ; Nanostructure ; Nuclear magnetic resonance ; Peptides ; Physics ; Polarization ; Spinning ; Sustainability</subject><ispartof>Chemical science (Cambridge), 2015-01, Vol.6 (12), p.686-6812</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2015 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</citedby><cites>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</cites><orcidid>0000-0001-5416-8405 ; 0000-0001-9701-3593 ; 0000-0002-1015-0980 ; 0000-0002-5628-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28757972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01587521$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouleau, E</creatorcontrib><creatorcontrib>Saint-Bonnet, P</creatorcontrib><creatorcontrib>Mentink-Vigier, F</creatorcontrib><creatorcontrib>Takahashi, H</creatorcontrib><creatorcontrib>Jacquot, J.-F</creatorcontrib><creatorcontrib>Bardet, M</creatorcontrib><creatorcontrib>Aussenac, F</creatorcontrib><creatorcontrib>Purea, A</creatorcontrib><creatorcontrib>Engelke, F</creatorcontrib><creatorcontrib>Hediger, S</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>De Paëpe, G</creatorcontrib><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool. The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</description><subject>Chemistry</subject><subject>Dynamics</subject><subject>Helium</subject><subject>Nanostructure</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Physics</subject><subject>Polarization</subject><subject>Spinning</subject><subject>Sustainability</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkkuP0zAUhSMEYkbDbNiDzA6QAn7EibNBqipgkMpDPNaW49w0Ro4dfJOi8utJ6VAeC_DGls_n43t9nGV3GX3CqKifWomWcsVqcyM757RgeSlFffO05vQsu0T8TJchBJO8up2dcVXJqq74eYbvZuxd2JI3r98ThIBucjs37Yl3g5uQzHgQ230wg7MkzNaDSWSM3iT3zUwuBvLVTT2xPiK0uY9xJDbt4xbCwvfg3TwQNMPogeDoQljs7mS3OuMRLq_ni-zTi-cf11f55u3LV-vVJrdSFFPe2Q54xygtSibB8kYoKetCAuXUNG3JFWVVDYZVvKSmbYABhQLKVrSqhcaIi-zZ0XecmwFaC2FKxusxucGkvY7G6T-V4Hq9jTstJVVlpRaDR0eD_q9jV6uNPuxRJpeX5GzHFvbh9WUpfpkBJz04tOC9CRBn1KzmhVJlIdX_USVkKSpeH1wfH1GbImKC7lQGo_qQv17LD-sf-a8W-P7v_Z7Qn2kvwIMjkNCe1F8fSI9ttzD3_sWI72QDwu8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Bouleau, E</creator><creator>Saint-Bonnet, P</creator><creator>Mentink-Vigier, F</creator><creator>Takahashi, H</creator><creator>Jacquot, J.-F</creator><creator>Bardet, M</creator><creator>Aussenac, F</creator><creator>Purea, A</creator><creator>Engelke, F</creator><creator>Hediger, S</creator><creator>Lee, D</creator><creator>De Paëpe, G</creator><general>The Royal Society of Chemistry</general><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5416-8405</orcidid><orcidid>https://orcid.org/0000-0001-9701-3593</orcidid><orcidid>https://orcid.org/0000-0002-1015-0980</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid></search><sort><creationdate>20150101</creationdate><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><author>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemistry</topic><topic>Dynamics</topic><topic>Helium</topic><topic>Nanostructure</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Physics</topic><topic>Polarization</topic><topic>Spinning</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouleau, E</creatorcontrib><creatorcontrib>Saint-Bonnet, P</creatorcontrib><creatorcontrib>Mentink-Vigier, F</creatorcontrib><creatorcontrib>Takahashi, H</creatorcontrib><creatorcontrib>Jacquot, J.-F</creatorcontrib><creatorcontrib>Bardet, M</creatorcontrib><creatorcontrib>Aussenac, F</creatorcontrib><creatorcontrib>Purea, A</creatorcontrib><creatorcontrib>Engelke, F</creatorcontrib><creatorcontrib>Hediger, S</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>De Paëpe, G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouleau, E</au><au>Saint-Bonnet, P</au><au>Mentink-Vigier, F</au><au>Takahashi, H</au><au>Jacquot, J.-F</au><au>Bardet, M</au><au>Aussenac, F</au><au>Purea, A</au><au>Engelke, F</au><au>Hediger, S</au><au>Lee, D</au><au>De Paëpe, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>6</volume><issue>12</issue><spage>686</spage><epage>6812</epage><pages>686-6812</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool. The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</abstract><cop>England</cop><pub>The Royal Society of Chemistry</pub><pmid>28757972</pmid><doi>10.1039/c5sc02819a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5416-8405</orcidid><orcidid>https://orcid.org/0000-0001-9701-3593</orcidid><orcidid>https://orcid.org/0000-0002-1015-0980</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2015-01, Vol.6 (12), p.686-6812
issn 2041-6520
2041-6539
language eng
recordid cdi_hal_primary_oai_HAL_hal_01587521v1
source PubMed Central(OpenAccess); DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals
subjects Chemistry
Dynamics
Helium
Nanostructure
Nuclear magnetic resonance
Peptides
Physics
Polarization
Spinning
Sustainability
title Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pushing%20NMR%20sensitivity%20limits%20using%20dynamic%20nuclear%20polarization%20with%20closed-loop%20cryogenic%20helium%20sample%20spinning&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Bouleau,%20E&rft.date=2015-01-01&rft.volume=6&rft.issue=12&rft.spage=686&rft.epage=6812&rft.pages=686-6812&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c5sc02819a&rft_dat=%3Cproquest_hal_p%3E1924886458%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835637291&rft_id=info:pmid/28757972&rfr_iscdi=true