Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning
We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2015-01, Vol.6 (12), p.686-6812 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6812 |
---|---|
container_issue | 12 |
container_start_page | 686 |
container_title | Chemical science (Cambridge) |
container_volume | 6 |
creator | Bouleau, E Saint-Bonnet, P Mentink-Vigier, F Takahashi, H Jacquot, J.-F Bardet, M Aussenac, F Purea, A Engelke, F Hediger, S Lee, D De Paëpe, G |
description | We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. |
doi_str_mv | 10.1039/c5sc02819a |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01587521v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924886458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</originalsourceid><addsrcrecordid>eNqFkkuP0zAUhSMEYkbDbNiDzA6QAn7EibNBqipgkMpDPNaW49w0Ro4dfJOi8utJ6VAeC_DGls_n43t9nGV3GX3CqKifWomWcsVqcyM757RgeSlFffO05vQsu0T8TJchBJO8up2dcVXJqq74eYbvZuxd2JI3r98ThIBucjs37Yl3g5uQzHgQ230wg7MkzNaDSWSM3iT3zUwuBvLVTT2xPiK0uY9xJDbt4xbCwvfg3TwQNMPogeDoQljs7mS3OuMRLq_ni-zTi-cf11f55u3LV-vVJrdSFFPe2Q54xygtSibB8kYoKetCAuXUNG3JFWVVDYZVvKSmbYABhQLKVrSqhcaIi-zZ0XecmwFaC2FKxusxucGkvY7G6T-V4Hq9jTstJVVlpRaDR0eD_q9jV6uNPuxRJpeX5GzHFvbh9WUpfpkBJz04tOC9CRBn1KzmhVJlIdX_USVkKSpeH1wfH1GbImKC7lQGo_qQv17LD-sf-a8W-P7v_Z7Qn2kvwIMjkNCe1F8fSI9ttzD3_sWI72QDwu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835637291</pqid></control><display><type>article</type><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><source>PubMed Central(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</creator><creatorcontrib>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</creatorcontrib><description>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c5sc02819a</identifier><identifier>PMID: 28757972</identifier><language>eng</language><publisher>England: The Royal Society of Chemistry</publisher><subject>Chemistry ; Dynamics ; Helium ; Nanostructure ; Nuclear magnetic resonance ; Peptides ; Physics ; Polarization ; Spinning ; Sustainability</subject><ispartof>Chemical science (Cambridge), 2015-01, Vol.6 (12), p.686-6812</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2015 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</citedby><cites>FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</cites><orcidid>0000-0001-5416-8405 ; 0000-0001-9701-3593 ; 0000-0002-1015-0980 ; 0000-0002-5628-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28757972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01587521$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouleau, E</creatorcontrib><creatorcontrib>Saint-Bonnet, P</creatorcontrib><creatorcontrib>Mentink-Vigier, F</creatorcontrib><creatorcontrib>Takahashi, H</creatorcontrib><creatorcontrib>Jacquot, J.-F</creatorcontrib><creatorcontrib>Bardet, M</creatorcontrib><creatorcontrib>Aussenac, F</creatorcontrib><creatorcontrib>Purea, A</creatorcontrib><creatorcontrib>Engelke, F</creatorcontrib><creatorcontrib>Hediger, S</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>De Paëpe, G</creatorcontrib><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</description><subject>Chemistry</subject><subject>Dynamics</subject><subject>Helium</subject><subject>Nanostructure</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Physics</subject><subject>Polarization</subject><subject>Spinning</subject><subject>Sustainability</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkkuP0zAUhSMEYkbDbNiDzA6QAn7EibNBqipgkMpDPNaW49w0Ro4dfJOi8utJ6VAeC_DGls_n43t9nGV3GX3CqKifWomWcsVqcyM757RgeSlFffO05vQsu0T8TJchBJO8up2dcVXJqq74eYbvZuxd2JI3r98ThIBucjs37Yl3g5uQzHgQ230wg7MkzNaDSWSM3iT3zUwuBvLVTT2xPiK0uY9xJDbt4xbCwvfg3TwQNMPogeDoQljs7mS3OuMRLq_ni-zTi-cf11f55u3LV-vVJrdSFFPe2Q54xygtSibB8kYoKetCAuXUNG3JFWVVDYZVvKSmbYABhQLKVrSqhcaIi-zZ0XecmwFaC2FKxusxucGkvY7G6T-V4Hq9jTstJVVlpRaDR0eD_q9jV6uNPuxRJpeX5GzHFvbh9WUpfpkBJz04tOC9CRBn1KzmhVJlIdX_USVkKSpeH1wfH1GbImKC7lQGo_qQv17LD-sf-a8W-P7v_Z7Qn2kvwIMjkNCe1F8fSI9ttzD3_sWI72QDwu8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Bouleau, E</creator><creator>Saint-Bonnet, P</creator><creator>Mentink-Vigier, F</creator><creator>Takahashi, H</creator><creator>Jacquot, J.-F</creator><creator>Bardet, M</creator><creator>Aussenac, F</creator><creator>Purea, A</creator><creator>Engelke, F</creator><creator>Hediger, S</creator><creator>Lee, D</creator><creator>De Paëpe, G</creator><general>The Royal Society of Chemistry</general><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5416-8405</orcidid><orcidid>https://orcid.org/0000-0001-9701-3593</orcidid><orcidid>https://orcid.org/0000-0002-1015-0980</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid></search><sort><creationdate>20150101</creationdate><title>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</title><author>Bouleau, E ; Saint-Bonnet, P ; Mentink-Vigier, F ; Takahashi, H ; Jacquot, J.-F ; Bardet, M ; Aussenac, F ; Purea, A ; Engelke, F ; Hediger, S ; Lee, D ; De Paëpe, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-fcfe2f1004615ec2b3855945e020abd6280179ea17260adbe1e0e4e6d3d8deba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemistry</topic><topic>Dynamics</topic><topic>Helium</topic><topic>Nanostructure</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Physics</topic><topic>Polarization</topic><topic>Spinning</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouleau, E</creatorcontrib><creatorcontrib>Saint-Bonnet, P</creatorcontrib><creatorcontrib>Mentink-Vigier, F</creatorcontrib><creatorcontrib>Takahashi, H</creatorcontrib><creatorcontrib>Jacquot, J.-F</creatorcontrib><creatorcontrib>Bardet, M</creatorcontrib><creatorcontrib>Aussenac, F</creatorcontrib><creatorcontrib>Purea, A</creatorcontrib><creatorcontrib>Engelke, F</creatorcontrib><creatorcontrib>Hediger, S</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>De Paëpe, G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouleau, E</au><au>Saint-Bonnet, P</au><au>Mentink-Vigier, F</au><au>Takahashi, H</au><au>Jacquot, J.-F</au><au>Bardet, M</au><au>Aussenac, F</au><au>Purea, A</au><au>Engelke, F</au><au>Hediger, S</au><au>Lee, D</au><au>De Paëpe, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>6</volume><issue>12</issue><spage>686</spage><epage>6812</epage><pages>686-6812</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.</abstract><cop>England</cop><pub>The Royal Society of Chemistry</pub><pmid>28757972</pmid><doi>10.1039/c5sc02819a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5416-8405</orcidid><orcidid>https://orcid.org/0000-0001-9701-3593</orcidid><orcidid>https://orcid.org/0000-0002-1015-0980</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2015-01, Vol.6 (12), p.686-6812 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01587521v1 |
source | PubMed Central(OpenAccess); DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Chemistry Dynamics Helium Nanostructure Nuclear magnetic resonance Peptides Physics Polarization Spinning Sustainability |
title | Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pushing%20NMR%20sensitivity%20limits%20using%20dynamic%20nuclear%20polarization%20with%20closed-loop%20cryogenic%20helium%20sample%20spinning&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Bouleau,%20E&rft.date=2015-01-01&rft.volume=6&rft.issue=12&rft.spage=686&rft.epage=6812&rft.pages=686-6812&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c5sc02819a&rft_dat=%3Cproquest_hal_p%3E1924886458%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835637291&rft_id=info:pmid/28757972&rfr_iscdi=true |