Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning
Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a li...
Gespeichert in:
Veröffentlicht in: | European journal of applied physiology 2017-08, Vol.117 (8), p.1533-1555 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 8 |
container_start_page | 1533 |
container_title | European journal of applied physiology |
container_volume | 117 |
creator | Dumond, Rémy Gastinger, Steven Rahman, Hala Abdul Faucheur, Alexis Le Quinton, Patrice Kang, Haitao Prioux, Jacques |
description | Purpose
The purposes of this study were to both improve the accuracy of respiratory volume (
V
) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique.
Method
We compared two models of machine learning (ML) for estimating
V
^
RMP
: a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged
24.1
±
3.4
years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers.
V
^
RMP
was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer (
V
SP
) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km
h
-
1
, treadmill running at 9 and 12 km
h
-
1
and ergometer cycling at 90 and 110 W).
Results
The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between
V
^
RMP
and
V
SP
(bias) was higher for the MLR model (
0.00191
±
0.141
L) than for the ANN model (
0.00158
±
0.150
L).
Conclusion
Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating
V
with sufficient accuracy during lying, sitting and standing and under various exercise conditions. |
doi_str_mv | 10.1007/s00421-017-3630-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01585982v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917822841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</originalsourceid><addsrcrecordid>eNp1kU-P1SAUxRujcf7oB3BjSNw4i-qFltK6m0xGx-QlbnRNbuF2HpO2PIHOON9emo4vxsSw4AK_ezhwiuINhw8cQH2MALXgJXBVVk0FJTwrTnlddWVTCfX8WPPupDiL8Q4AWsHbl8WJaBsu8jgtfl3H5CZMzs_MDyxQPLiAyYdHdu_HZSI2BD-xtPcBjcfe-snNOLI-EKa9m2-ZdTHhbCh-YsZPBwwublrpwbPJWxrjuprQZJzYSBjm3PeqeDHgGOn103xe_Ph8_f3qptx9-_L16nJXGikglbZvK-CSi1o2uVamR9ER2KqWOLRcGoO8UTXZqu8VKQtyUNJWhGBsUxNU58XFprvHUR9Cfmt41B6dvrnc6XUvq7eya8U9z-z7jT0E_3OhmPTkoqFxxJn8EjXvoFO1EK3M6Lt_0Du_hPwzK8VVm6F6FeQbZYKPMdBwdMBBrxHqLcJsQuk1Qr0afvukvPQT2WPHn8wyIDYg5qP5lsJfV_9X9TeQOqeO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917822841</pqid></control><display><type>article</type><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</creator><creatorcontrib>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</creatorcontrib><description>Purpose
The purposes of this study were to both improve the accuracy of respiratory volume (
V
) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique.
Method
We compared two models of machine learning (ML) for estimating
V
^
RMP
: a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged
24.1
±
3.4
years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers.
V
^
RMP
was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer (
V
SP
) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km
h
-
1
, treadmill running at 9 and 12 km
h
-
1
and ergometer cycling at 90 and 110 W).
Results
The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between
V
^
RMP
and
V
SP
(bias) was higher for the MLR model (
0.00191
±
0.141
L) than for the ANN model (
0.00158
±
0.150
L).
Conclusion
Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating
V
with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-017-3630-0</identifier><identifier>PMID: 28612121</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Exercise ; Female ; Fitness equipment ; Human Physiology ; Humans ; Learning algorithms ; Life Sciences ; Lung Volume Measurements - methods ; Machine Learning ; Male ; Models, Biological ; Neural networks ; Occupational Medicine/Industrial Medicine ; Original Article ; Oxygen Consumption ; Physical training ; Respiration ; Respiratory Mechanics - physiology ; Rib ; Spine ; Sports Medicine ; Walking ; Young Adult</subject><ispartof>European journal of applied physiology, 2017-08, Vol.117 (8), p.1533-1555</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>European Journal of Applied Physiology is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</citedby><cites>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</cites><orcidid>0000-0003-0924-0986 ; 0000-0002-5380-6767 ; 0000-0001-8729-1573 ; 0000-0002-3688-6574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-017-3630-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-017-3630-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28612121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01585982$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumond, Rémy</creatorcontrib><creatorcontrib>Gastinger, Steven</creatorcontrib><creatorcontrib>Rahman, Hala Abdul</creatorcontrib><creatorcontrib>Faucheur, Alexis Le</creatorcontrib><creatorcontrib>Quinton, Patrice</creatorcontrib><creatorcontrib>Kang, Haitao</creatorcontrib><creatorcontrib>Prioux, Jacques</creatorcontrib><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose
The purposes of this study were to both improve the accuracy of respiratory volume (
V
) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique.
Method
We compared two models of machine learning (ML) for estimating
V
^
RMP
: a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged
24.1
±
3.4
years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers.
V
^
RMP
was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer (
V
SP
) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km
h
-
1
, treadmill running at 9 and 12 km
h
-
1
and ergometer cycling at 90 and 110 W).
Results
The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between
V
^
RMP
and
V
SP
(bias) was higher for the MLR model (
0.00191
±
0.141
L) than for the ANN model (
0.00158
±
0.150
L).
Conclusion
Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating
V
with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</description><subject>Adult</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Exercise</subject><subject>Female</subject><subject>Fitness equipment</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Lung Volume Measurements - methods</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Neural networks</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Oxygen Consumption</subject><subject>Physical training</subject><subject>Respiration</subject><subject>Respiratory Mechanics - physiology</subject><subject>Rib</subject><subject>Spine</subject><subject>Sports Medicine</subject><subject>Walking</subject><subject>Young Adult</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU-P1SAUxRujcf7oB3BjSNw4i-qFltK6m0xGx-QlbnRNbuF2HpO2PIHOON9emo4vxsSw4AK_ezhwiuINhw8cQH2MALXgJXBVVk0FJTwrTnlddWVTCfX8WPPupDiL8Q4AWsHbl8WJaBsu8jgtfl3H5CZMzs_MDyxQPLiAyYdHdu_HZSI2BD-xtPcBjcfe-snNOLI-EKa9m2-ZdTHhbCh-YsZPBwwublrpwbPJWxrjuprQZJzYSBjm3PeqeDHgGOn103xe_Ph8_f3qptx9-_L16nJXGikglbZvK-CSi1o2uVamR9ER2KqWOLRcGoO8UTXZqu8VKQtyUNJWhGBsUxNU58XFprvHUR9Cfmt41B6dvrnc6XUvq7eya8U9z-z7jT0E_3OhmPTkoqFxxJn8EjXvoFO1EK3M6Lt_0Du_hPwzK8VVm6F6FeQbZYKPMdBwdMBBrxHqLcJsQuk1Qr0afvukvPQT2WPHn8wyIDYg5qP5lsJfV_9X9TeQOqeO</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Dumond, Rémy</creator><creator>Gastinger, Steven</creator><creator>Rahman, Hala Abdul</creator><creator>Faucheur, Alexis Le</creator><creator>Quinton, Patrice</creator><creator>Kang, Haitao</creator><creator>Prioux, Jacques</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0924-0986</orcidid><orcidid>https://orcid.org/0000-0002-5380-6767</orcidid><orcidid>https://orcid.org/0000-0001-8729-1573</orcidid><orcidid>https://orcid.org/0000-0002-3688-6574</orcidid></search><sort><creationdate>20170801</creationdate><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><author>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Exercise</topic><topic>Female</topic><topic>Fitness equipment</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Lung Volume Measurements - methods</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Neural networks</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Oxygen Consumption</topic><topic>Physical training</topic><topic>Respiration</topic><topic>Respiratory Mechanics - physiology</topic><topic>Rib</topic><topic>Spine</topic><topic>Sports Medicine</topic><topic>Walking</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumond, Rémy</creatorcontrib><creatorcontrib>Gastinger, Steven</creatorcontrib><creatorcontrib>Rahman, Hala Abdul</creatorcontrib><creatorcontrib>Faucheur, Alexis Le</creatorcontrib><creatorcontrib>Quinton, Patrice</creatorcontrib><creatorcontrib>Kang, Haitao</creatorcontrib><creatorcontrib>Prioux, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumond, Rémy</au><au>Gastinger, Steven</au><au>Rahman, Hala Abdul</au><au>Faucheur, Alexis Le</au><au>Quinton, Patrice</au><au>Kang, Haitao</au><au>Prioux, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>117</volume><issue>8</issue><spage>1533</spage><epage>1555</epage><pages>1533-1555</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>Purpose
The purposes of this study were to both improve the accuracy of respiratory volume (
V
) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique.
Method
We compared two models of machine learning (ML) for estimating
V
^
RMP
: a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged
24.1
±
3.4
years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers.
V
^
RMP
was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer (
V
SP
) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km
h
-
1
, treadmill running at 9 and 12 km
h
-
1
and ergometer cycling at 90 and 110 W).
Results
The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between
V
^
RMP
and
V
SP
(bias) was higher for the MLR model (
0.00191
±
0.141
L) than for the ANN model (
0.00158
±
0.150
L).
Conclusion
Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating
V
with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28612121</pmid><doi>10.1007/s00421-017-3630-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0924-0986</orcidid><orcidid>https://orcid.org/0000-0002-5380-6767</orcidid><orcidid>https://orcid.org/0000-0001-8729-1573</orcidid><orcidid>https://orcid.org/0000-0002-3688-6574</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-6319 |
ispartof | European journal of applied physiology, 2017-08, Vol.117 (8), p.1533-1555 |
issn | 1439-6319 1439-6327 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01585982v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adult Artificial intelligence Biomedical and Life Sciences Biomedicine Exercise Female Fitness equipment Human Physiology Humans Learning algorithms Life Sciences Lung Volume Measurements - methods Machine Learning Male Models, Biological Neural networks Occupational Medicine/Industrial Medicine Original Article Oxygen Consumption Physical training Respiration Respiratory Mechanics - physiology Rib Spine Sports Medicine Walking Young Adult |
title | Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20respiratory%20volume%20from%20thoracoabdominal%20breathing%20distances:%20comparison%20of%20two%20models%20of%20machine%20learning&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Dumond,%20R%C3%A9my&rft.date=2017-08-01&rft.volume=117&rft.issue=8&rft.spage=1533&rft.epage=1555&rft.pages=1533-1555&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-017-3630-0&rft_dat=%3Cproquest_hal_p%3E1917822841%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917822841&rft_id=info:pmid/28612121&rfr_iscdi=true |