Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning

Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 2017-08, Vol.117 (8), p.1533-1555
Hauptverfasser: Dumond, Rémy, Gastinger, Steven, Rahman, Hala Abdul, Faucheur, Alexis Le, Quinton, Patrice, Kang, Haitao, Prioux, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 8
container_start_page 1533
container_title European journal of applied physiology
container_volume 117
creator Dumond, Rémy
Gastinger, Steven
Rahman, Hala Abdul
Faucheur, Alexis Le
Quinton, Patrice
Kang, Haitao
Prioux, Jacques
description Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged 24.1 ± 3.4 years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. V ^ RMP was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ( V SP ) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km h - 1 , treadmill running at 9 and 12  km h - 1 and ergometer cycling at 90 and 110 W). Results The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between V ^ RMP and V SP (bias) was higher for the MLR model ( 0.00191 ± 0.141 L) than for the ANN model ( 0.00158 ± 0.150 L). Conclusion Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.
doi_str_mv 10.1007/s00421-017-3630-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01585982v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917822841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</originalsourceid><addsrcrecordid>eNp1kU-P1SAUxRujcf7oB3BjSNw4i-qFltK6m0xGx-QlbnRNbuF2HpO2PIHOON9emo4vxsSw4AK_ezhwiuINhw8cQH2MALXgJXBVVk0FJTwrTnlddWVTCfX8WPPupDiL8Q4AWsHbl8WJaBsu8jgtfl3H5CZMzs_MDyxQPLiAyYdHdu_HZSI2BD-xtPcBjcfe-snNOLI-EKa9m2-ZdTHhbCh-YsZPBwwublrpwbPJWxrjuprQZJzYSBjm3PeqeDHgGOn103xe_Ph8_f3qptx9-_L16nJXGikglbZvK-CSi1o2uVamR9ER2KqWOLRcGoO8UTXZqu8VKQtyUNJWhGBsUxNU58XFprvHUR9Cfmt41B6dvrnc6XUvq7eya8U9z-z7jT0E_3OhmPTkoqFxxJn8EjXvoFO1EK3M6Lt_0Du_hPwzK8VVm6F6FeQbZYKPMdBwdMBBrxHqLcJsQuk1Qr0afvukvPQT2WPHn8wyIDYg5qP5lsJfV_9X9TeQOqeO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917822841</pqid></control><display><type>article</type><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</creator><creatorcontrib>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</creatorcontrib><description>Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged 24.1 ± 3.4 years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. V ^ RMP was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ( V SP ) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km h - 1 , treadmill running at 9 and 12  km h - 1 and ergometer cycling at 90 and 110 W). Results The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between V ^ RMP and V SP (bias) was higher for the MLR model ( 0.00191 ± 0.141 L) than for the ANN model ( 0.00158 ± 0.150 L). Conclusion Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-017-3630-0</identifier><identifier>PMID: 28612121</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Exercise ; Female ; Fitness equipment ; Human Physiology ; Humans ; Learning algorithms ; Life Sciences ; Lung Volume Measurements - methods ; Machine Learning ; Male ; Models, Biological ; Neural networks ; Occupational Medicine/Industrial Medicine ; Original Article ; Oxygen Consumption ; Physical training ; Respiration ; Respiratory Mechanics - physiology ; Rib ; Spine ; Sports Medicine ; Walking ; Young Adult</subject><ispartof>European journal of applied physiology, 2017-08, Vol.117 (8), p.1533-1555</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>European Journal of Applied Physiology is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</citedby><cites>FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</cites><orcidid>0000-0003-0924-0986 ; 0000-0002-5380-6767 ; 0000-0001-8729-1573 ; 0000-0002-3688-6574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-017-3630-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-017-3630-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28612121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01585982$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumond, Rémy</creatorcontrib><creatorcontrib>Gastinger, Steven</creatorcontrib><creatorcontrib>Rahman, Hala Abdul</creatorcontrib><creatorcontrib>Faucheur, Alexis Le</creatorcontrib><creatorcontrib>Quinton, Patrice</creatorcontrib><creatorcontrib>Kang, Haitao</creatorcontrib><creatorcontrib>Prioux, Jacques</creatorcontrib><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged 24.1 ± 3.4 years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. V ^ RMP was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ( V SP ) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km h - 1 , treadmill running at 9 and 12  km h - 1 and ergometer cycling at 90 and 110 W). Results The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between V ^ RMP and V SP (bias) was higher for the MLR model ( 0.00191 ± 0.141 L) than for the ANN model ( 0.00158 ± 0.150 L). Conclusion Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</description><subject>Adult</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Exercise</subject><subject>Female</subject><subject>Fitness equipment</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Lung Volume Measurements - methods</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Neural networks</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Oxygen Consumption</subject><subject>Physical training</subject><subject>Respiration</subject><subject>Respiratory Mechanics - physiology</subject><subject>Rib</subject><subject>Spine</subject><subject>Sports Medicine</subject><subject>Walking</subject><subject>Young Adult</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU-P1SAUxRujcf7oB3BjSNw4i-qFltK6m0xGx-QlbnRNbuF2HpO2PIHOON9emo4vxsSw4AK_ezhwiuINhw8cQH2MALXgJXBVVk0FJTwrTnlddWVTCfX8WPPupDiL8Q4AWsHbl8WJaBsu8jgtfl3H5CZMzs_MDyxQPLiAyYdHdu_HZSI2BD-xtPcBjcfe-snNOLI-EKa9m2-ZdTHhbCh-YsZPBwwublrpwbPJWxrjuprQZJzYSBjm3PeqeDHgGOn103xe_Ph8_f3qptx9-_L16nJXGikglbZvK-CSi1o2uVamR9ER2KqWOLRcGoO8UTXZqu8VKQtyUNJWhGBsUxNU58XFprvHUR9Cfmt41B6dvrnc6XUvq7eya8U9z-z7jT0E_3OhmPTkoqFxxJn8EjXvoFO1EK3M6Lt_0Du_hPwzK8VVm6F6FeQbZYKPMdBwdMBBrxHqLcJsQuk1Qr0afvukvPQT2WPHn8wyIDYg5qP5lsJfV_9X9TeQOqeO</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Dumond, Rémy</creator><creator>Gastinger, Steven</creator><creator>Rahman, Hala Abdul</creator><creator>Faucheur, Alexis Le</creator><creator>Quinton, Patrice</creator><creator>Kang, Haitao</creator><creator>Prioux, Jacques</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0924-0986</orcidid><orcidid>https://orcid.org/0000-0002-5380-6767</orcidid><orcidid>https://orcid.org/0000-0001-8729-1573</orcidid><orcidid>https://orcid.org/0000-0002-3688-6574</orcidid></search><sort><creationdate>20170801</creationdate><title>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</title><author>Dumond, Rémy ; Gastinger, Steven ; Rahman, Hala Abdul ; Faucheur, Alexis Le ; Quinton, Patrice ; Kang, Haitao ; Prioux, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-db8301512456db87cba29e0d345af815cca1674ed3bb7e7d05f75d3ea0cd64e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Exercise</topic><topic>Female</topic><topic>Fitness equipment</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Lung Volume Measurements - methods</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Neural networks</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Oxygen Consumption</topic><topic>Physical training</topic><topic>Respiration</topic><topic>Respiratory Mechanics - physiology</topic><topic>Rib</topic><topic>Spine</topic><topic>Sports Medicine</topic><topic>Walking</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumond, Rémy</creatorcontrib><creatorcontrib>Gastinger, Steven</creatorcontrib><creatorcontrib>Rahman, Hala Abdul</creatorcontrib><creatorcontrib>Faucheur, Alexis Le</creatorcontrib><creatorcontrib>Quinton, Patrice</creatorcontrib><creatorcontrib>Kang, Haitao</creatorcontrib><creatorcontrib>Prioux, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumond, Rémy</au><au>Gastinger, Steven</au><au>Rahman, Hala Abdul</au><au>Faucheur, Alexis Le</au><au>Quinton, Patrice</au><au>Kang, Haitao</au><au>Prioux, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>117</volume><issue>8</issue><spage>1533</spage><epage>1555</epage><pages>1533-1555</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>Purpose The purposes of this study were to both improve the accuracy of respiratory volume ( V ) estimates using the respiratory magnetometer plethysmography (RMP) technique and facilitate the use of this technique. Method We compared two models of machine learning (ML) for estimating V ^ RMP : a linear model (multiple linear regression—MLR) and a nonlinear model (artificial neural network—ANN), and we used cross-validation to validate these models. Fourteen healthy adults, aged 24.1 ± 3.4 years participated in the present study. The protocol was conducted in a laboratory test room. The anteroposterior displacements of the rib cage and abdomen, and the axial displacements of the chest wall and spine were measured using two pairs of magnetometers. V ^ RMP was estimated from these four signals, and the respiratory volume was simultaneously measured using a spirometer ( V SP ) under lying, sitting and standing conditions as well as various exercise conditions (working on computer, treadmill walking at 4 and 6 km h - 1 , treadmill running at 9 and 12  km h - 1 and ergometer cycling at 90 and 110 W). Results The results from the ANN model fitted the spirometer volume significantly better than those obtained through MLR. Considering all activities, the difference between V ^ RMP and V SP (bias) was higher for the MLR model ( 0.00191 ± 0.141 L) than for the ANN model ( 0.00158 ± 0.150 L). Conclusion Our results demonstrate that this new processing approach for RMP seems to be a valid tool for estimating V with sufficient accuracy during lying, sitting and standing and under various exercise conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28612121</pmid><doi>10.1007/s00421-017-3630-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0924-0986</orcidid><orcidid>https://orcid.org/0000-0002-5380-6767</orcidid><orcidid>https://orcid.org/0000-0001-8729-1573</orcidid><orcidid>https://orcid.org/0000-0002-3688-6574</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-6319
ispartof European journal of applied physiology, 2017-08, Vol.117 (8), p.1533-1555
issn 1439-6319
1439-6327
language eng
recordid cdi_hal_primary_oai_HAL_hal_01585982v1
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adult
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Exercise
Female
Fitness equipment
Human Physiology
Humans
Learning algorithms
Life Sciences
Lung Volume Measurements - methods
Machine Learning
Male
Models, Biological
Neural networks
Occupational Medicine/Industrial Medicine
Original Article
Oxygen Consumption
Physical training
Respiration
Respiratory Mechanics - physiology
Rib
Spine
Sports Medicine
Walking
Young Adult
title Estimation of respiratory volume from thoracoabdominal breathing distances: comparison of two models of machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20respiratory%20volume%20from%20thoracoabdominal%20breathing%20distances:%20comparison%20of%20two%20models%20of%20machine%20learning&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Dumond,%20R%C3%A9my&rft.date=2017-08-01&rft.volume=117&rft.issue=8&rft.spage=1533&rft.epage=1555&rft.pages=1533-1555&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-017-3630-0&rft_dat=%3Cproquest_hal_p%3E1917822841%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917822841&rft_id=info:pmid/28612121&rfr_iscdi=true