Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

Abstract Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-04, Vol.466 (1), p.228-247
Hauptverfasser: Etherington, J., Thomas, D., Maraston, C., Sevilla-Noarbe, I., Bechtol, K., Pforr, J., Pellegrini, P., Gschwend, J., Carnero Rosell, A., Maia, M. A. G., da Costa, L. N., Benoit-Lévy, A., Swanson, M. E. C., Hartley, W. G., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Carrasco Kind, M., Carretero, J., Castander, F. J., Crocce, M., Cunha, C. E., Desai, S., Doel, P., Eifler, T. F., Evrard, A. E., Fausti Neto, A., Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Martini, P., Melchior, P., Miquel, R., Mohr, J. J., Nord, B., Ogando, R., Plazas, A. A., Romer, A. K., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Tarle, G., Vikram, V., Walker, A. R., Zhang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 1
container_start_page 228
container_title Monthly notices of the Royal Astronomical Society
container_volume 466
creator Etherington, J.
Thomas, D.
Maraston, C.
Sevilla-Noarbe, I.
Bechtol, K.
Pforr, J.
Pellegrini, P.
Gschwend, J.
Carnero Rosell, A.
Maia, M. A. G.
da Costa, L. N.
Benoit-Lévy, A.
Swanson, M. E. C.
Hartley, W. G.
Abbott, T. M. C.
Abdalla, F. B.
Allam, S.
Bernstein, R. A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Carrasco Kind, M.
Carretero, J.
Castander, F. J.
Crocce, M.
Cunha, C. E.
Desai, S.
Doel, P.
Eifler, T. F.
Evrard, A. E.
Fausti Neto, A.
Finley, D. A.
Flaugher, B.
Fosalba, P.
Frieman, J.
Gerdes, D. W.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Honscheid, K.
James, D. J.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Lima, M.
Martini, P.
Melchior, P.
Miquel, R.
Mohr, J. J.
Nord, B.
Ogando, R.
Plazas, A. A.
Romer, A. K.
Rykoff, E. S.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Tarle, G.
Vikram, V.
Walker, A. R.
Zhang, Y.
description Abstract Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.
doi_str_mv 10.1093/mnras/stw3069
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01582718v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw3069</oup_id><sourcerecordid>1877812169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-86364e702c70e786c8c51727313f723d07f44a470583e4427c581648e4b2b4813</originalsourceid><addsrcrecordid>eNqN0U1LJDEQBuAgCo6uR-8BL3pozVcn6aPorCMM7GHdvYaYqdZod9Im3aPz77dnRhS8uKeC4uGlihehY0rOKan4RRuSzRe5f-VEVjtoQrksC1ZJuYsmhPCy0IrSfXSQ8xMhRHAmJ6ibhqVPMbQQetvgBXQQFhAc4Fjj_hHwg23s2wrnHprGJtzanHE9BNf7GLAPG3Nt0zOeBkgPK_x7SEsYh_OblL-QfO2d3fBr29sfaK-2TYaj93mI_vyc3l3Nivmvm9ury3nhBFd9oSWXAhRhThFQWjrtSqqY4pTXivEFUbUQVihSag5CMOVKTaXQIO7ZvdCUH6Kzbe6jbUyXfGvTykTrzexybtY7QkvNFNXLtT3d2i7FlwFyb1qf3frhAHHIhmotKGMV4f9BldKUUVmN9OQLfYpDCuPTo5KaiVKWbFTFVrkUc05QfxxLiVnXaja1mvdaPw-IQ_cN_QdHkqLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868245652</pqid></control><display><type>article</type><title>Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data</title><source>Oxford Journals Open Access Collection</source><creator>Etherington, J. ; Thomas, D. ; Maraston, C. ; Sevilla-Noarbe, I. ; Bechtol, K. ; Pforr, J. ; Pellegrini, P. ; Gschwend, J. ; Carnero Rosell, A. ; Maia, M. A. G. ; da Costa, L. N. ; Benoit-Lévy, A. ; Swanson, M. E. C. ; Hartley, W. G. ; Abbott, T. M. C. ; Abdalla, F. B. ; Allam, S. ; Bernstein, R. A. ; Bertin, E. ; Brooks, D. ; Buckley-Geer, E. ; Carrasco Kind, M. ; Carretero, J. ; Castander, F. J. ; Crocce, M. ; Cunha, C. E. ; Desai, S. ; Doel, P. ; Eifler, T. F. ; Evrard, A. E. ; Fausti Neto, A. ; Finley, D. A. ; Flaugher, B. ; Fosalba, P. ; Frieman, J. ; Gerdes, D. W. ; Gruen, D. ; Gruendl, R. A. ; Gutierrez, G. ; Honscheid, K. ; James, D. J. ; Kuehn, K. ; Kuropatkin, N. ; Lahav, O. ; Lima, M. ; Martini, P. ; Melchior, P. ; Miquel, R. ; Mohr, J. J. ; Nord, B. ; Ogando, R. ; Plazas, A. A. ; Romer, A. K. ; Rykoff, E. S. ; Sanchez, E. ; Scarpine, V. ; Schubnell, M. ; Smith, R. C. ; Soares-Santos, M. ; Sobreira, F. ; Tarle, G. ; Vikram, V. ; Walker, A. R. ; Zhang, Y.</creator><creatorcontrib>Etherington, J. ; Thomas, D. ; Maraston, C. ; Sevilla-Noarbe, I. ; Bechtol, K. ; Pforr, J. ; Pellegrini, P. ; Gschwend, J. ; Carnero Rosell, A. ; Maia, M. A. G. ; da Costa, L. N. ; Benoit-Lévy, A. ; Swanson, M. E. C. ; Hartley, W. G. ; Abbott, T. M. C. ; Abdalla, F. B. ; Allam, S. ; Bernstein, R. A. ; Bertin, E. ; Brooks, D. ; Buckley-Geer, E. ; Carrasco Kind, M. ; Carretero, J. ; Castander, F. J. ; Crocce, M. ; Cunha, C. E. ; Desai, S. ; Doel, P. ; Eifler, T. F. ; Evrard, A. E. ; Fausti Neto, A. ; Finley, D. A. ; Flaugher, B. ; Fosalba, P. ; Frieman, J. ; Gerdes, D. W. ; Gruen, D. ; Gruendl, R. A. ; Gutierrez, G. ; Honscheid, K. ; James, D. J. ; Kuehn, K. ; Kuropatkin, N. ; Lahav, O. ; Lima, M. ; Martini, P. ; Melchior, P. ; Miquel, R. ; Mohr, J. J. ; Nord, B. ; Ogando, R. ; Plazas, A. A. ; Romer, A. K. ; Rykoff, E. S. ; Sanchez, E. ; Scarpine, V. ; Schubnell, M. ; Smith, R. C. ; Soares-Santos, M. ; Sobreira, F. ; Tarle, G. ; Vikram, V. ; Walker, A. R. ; Zhang, Y.</creatorcontrib><description>Abstract Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 &lt; z &lt; 1.05. For z &lt; 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw3069</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Apertures ; Astrophysics ; Density ; Environment ; Galaxies ; High density ; Mathematical analysis ; Mathematical models ; Monte Carlo simulation ; Photometry ; Physics ; Probability distribution ; Red shift ; Space telescopes ; Star &amp; galaxy formation ; Stellar mass</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (1), p.228-247</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Apr 1, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-86364e702c70e786c8c51727313f723d07f44a470583e4427c581648e4b2b4813</citedby><cites>FETCH-LOGICAL-c437t-86364e702c70e786c8c51727313f723d07f44a470583e4427c581648e4b2b4813</cites><orcidid>0000-0002-1510-5214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw3069$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-01582718$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Etherington, J.</creatorcontrib><creatorcontrib>Thomas, D.</creatorcontrib><creatorcontrib>Maraston, C.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Pforr, J.</creatorcontrib><creatorcontrib>Pellegrini, P.</creatorcontrib><creatorcontrib>Gschwend, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Maia, M. A. G.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Benoit-Lévy, A.</creatorcontrib><creatorcontrib>Swanson, M. E. C.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Abdalla, F. B.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Bernstein, R. A.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Cunha, C. E.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Fausti Neto, A.</creatorcontrib><creatorcontrib>Finley, D. A.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Gerdes, D. W.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Gutierrez, G.</creatorcontrib><creatorcontrib>Honscheid, K.</creatorcontrib><creatorcontrib>James, D. J.</creatorcontrib><creatorcontrib>Kuehn, K.</creatorcontrib><creatorcontrib>Kuropatkin, N.</creatorcontrib><creatorcontrib>Lahav, O.</creatorcontrib><creatorcontrib>Lima, M.</creatorcontrib><creatorcontrib>Martini, P.</creatorcontrib><creatorcontrib>Melchior, P.</creatorcontrib><creatorcontrib>Miquel, R.</creatorcontrib><creatorcontrib>Mohr, J. J.</creatorcontrib><creatorcontrib>Nord, B.</creatorcontrib><creatorcontrib>Ogando, R.</creatorcontrib><creatorcontrib>Plazas, A. A.</creatorcontrib><creatorcontrib>Romer, A. K.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Scarpine, V.</creatorcontrib><creatorcontrib>Schubnell, M.</creatorcontrib><creatorcontrib>Smith, R. C.</creatorcontrib><creatorcontrib>Soares-Santos, M.</creatorcontrib><creatorcontrib>Sobreira, F.</creatorcontrib><creatorcontrib>Tarle, G.</creatorcontrib><creatorcontrib>Vikram, V.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><title>Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 &lt; z &lt; 1.05. For z &lt; 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.</description><subject>Apertures</subject><subject>Astrophysics</subject><subject>Density</subject><subject>Environment</subject><subject>Galaxies</subject><subject>High density</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Photometry</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Red shift</subject><subject>Space telescopes</subject><subject>Star &amp; galaxy formation</subject><subject>Stellar mass</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LJDEQBuAgCo6uR-8BL3pozVcn6aPorCMM7GHdvYaYqdZod9Im3aPz77dnRhS8uKeC4uGlihehY0rOKan4RRuSzRe5f-VEVjtoQrksC1ZJuYsmhPCy0IrSfXSQ8xMhRHAmJ6ibhqVPMbQQetvgBXQQFhAc4Fjj_hHwg23s2wrnHprGJtzanHE9BNf7GLAPG3Nt0zOeBkgPK_x7SEsYh_OblL-QfO2d3fBr29sfaK-2TYaj93mI_vyc3l3Nivmvm9ury3nhBFd9oSWXAhRhThFQWjrtSqqY4pTXivEFUbUQVihSag5CMOVKTaXQIO7ZvdCUH6Kzbe6jbUyXfGvTykTrzexybtY7QkvNFNXLtT3d2i7FlwFyb1qf3frhAHHIhmotKGMV4f9BldKUUVmN9OQLfYpDCuPTo5KaiVKWbFTFVrkUc05QfxxLiVnXaja1mvdaPw-IQ_cN_QdHkqLU</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Etherington, J.</creator><creator>Thomas, D.</creator><creator>Maraston, C.</creator><creator>Sevilla-Noarbe, I.</creator><creator>Bechtol, K.</creator><creator>Pforr, J.</creator><creator>Pellegrini, P.</creator><creator>Gschwend, J.</creator><creator>Carnero Rosell, A.</creator><creator>Maia, M. A. G.</creator><creator>da Costa, L. N.</creator><creator>Benoit-Lévy, A.</creator><creator>Swanson, M. E. C.</creator><creator>Hartley, W. G.</creator><creator>Abbott, T. M. C.</creator><creator>Abdalla, F. B.</creator><creator>Allam, S.</creator><creator>Bernstein, R. A.</creator><creator>Bertin, E.</creator><creator>Brooks, D.</creator><creator>Buckley-Geer, E.</creator><creator>Carrasco Kind, M.</creator><creator>Carretero, J.</creator><creator>Castander, F. J.</creator><creator>Crocce, M.</creator><creator>Cunha, C. E.</creator><creator>Desai, S.</creator><creator>Doel, P.</creator><creator>Eifler, T. F.</creator><creator>Evrard, A. E.</creator><creator>Fausti Neto, A.</creator><creator>Finley, D. A.</creator><creator>Flaugher, B.</creator><creator>Fosalba, P.</creator><creator>Frieman, J.</creator><creator>Gerdes, D. W.</creator><creator>Gruen, D.</creator><creator>Gruendl, R. A.</creator><creator>Gutierrez, G.</creator><creator>Honscheid, K.</creator><creator>James, D. J.</creator><creator>Kuehn, K.</creator><creator>Kuropatkin, N.</creator><creator>Lahav, O.</creator><creator>Lima, M.</creator><creator>Martini, P.</creator><creator>Melchior, P.</creator><creator>Miquel, R.</creator><creator>Mohr, J. J.</creator><creator>Nord, B.</creator><creator>Ogando, R.</creator><creator>Plazas, A. A.</creator><creator>Romer, A. K.</creator><creator>Rykoff, E. S.</creator><creator>Sanchez, E.</creator><creator>Scarpine, V.</creator><creator>Schubnell, M.</creator><creator>Smith, R. C.</creator><creator>Soares-Santos, M.</creator><creator>Sobreira, F.</creator><creator>Tarle, G.</creator><creator>Vikram, V.</creator><creator>Walker, A. R.</creator><creator>Zhang, Y.</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid></search><sort><creationdate>20170401</creationdate><title>Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data</title><author>Etherington, J. ; Thomas, D. ; Maraston, C. ; Sevilla-Noarbe, I. ; Bechtol, K. ; Pforr, J. ; Pellegrini, P. ; Gschwend, J. ; Carnero Rosell, A. ; Maia, M. A. G. ; da Costa, L. N. ; Benoit-Lévy, A. ; Swanson, M. E. C. ; Hartley, W. G. ; Abbott, T. M. C. ; Abdalla, F. B. ; Allam, S. ; Bernstein, R. A. ; Bertin, E. ; Brooks, D. ; Buckley-Geer, E. ; Carrasco Kind, M. ; Carretero, J. ; Castander, F. J. ; Crocce, M. ; Cunha, C. E. ; Desai, S. ; Doel, P. ; Eifler, T. F. ; Evrard, A. E. ; Fausti Neto, A. ; Finley, D. A. ; Flaugher, B. ; Fosalba, P. ; Frieman, J. ; Gerdes, D. W. ; Gruen, D. ; Gruendl, R. A. ; Gutierrez, G. ; Honscheid, K. ; James, D. J. ; Kuehn, K. ; Kuropatkin, N. ; Lahav, O. ; Lima, M. ; Martini, P. ; Melchior, P. ; Miquel, R. ; Mohr, J. J. ; Nord, B. ; Ogando, R. ; Plazas, A. A. ; Romer, A. K. ; Rykoff, E. S. ; Sanchez, E. ; Scarpine, V. ; Schubnell, M. ; Smith, R. C. ; Soares-Santos, M. ; Sobreira, F. ; Tarle, G. ; Vikram, V. ; Walker, A. R. ; Zhang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-86364e702c70e786c8c51727313f723d07f44a470583e4427c581648e4b2b4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apertures</topic><topic>Astrophysics</topic><topic>Density</topic><topic>Environment</topic><topic>Galaxies</topic><topic>High density</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Photometry</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Red shift</topic><topic>Space telescopes</topic><topic>Star &amp; galaxy formation</topic><topic>Stellar mass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etherington, J.</creatorcontrib><creatorcontrib>Thomas, D.</creatorcontrib><creatorcontrib>Maraston, C.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Pforr, J.</creatorcontrib><creatorcontrib>Pellegrini, P.</creatorcontrib><creatorcontrib>Gschwend, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Maia, M. A. G.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Benoit-Lévy, A.</creatorcontrib><creatorcontrib>Swanson, M. E. C.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Abdalla, F. B.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Bernstein, R. A.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Cunha, C. E.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Fausti Neto, A.</creatorcontrib><creatorcontrib>Finley, D. A.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Gerdes, D. W.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Gutierrez, G.</creatorcontrib><creatorcontrib>Honscheid, K.</creatorcontrib><creatorcontrib>James, D. J.</creatorcontrib><creatorcontrib>Kuehn, K.</creatorcontrib><creatorcontrib>Kuropatkin, N.</creatorcontrib><creatorcontrib>Lahav, O.</creatorcontrib><creatorcontrib>Lima, M.</creatorcontrib><creatorcontrib>Martini, P.</creatorcontrib><creatorcontrib>Melchior, P.</creatorcontrib><creatorcontrib>Miquel, R.</creatorcontrib><creatorcontrib>Mohr, J. J.</creatorcontrib><creatorcontrib>Nord, B.</creatorcontrib><creatorcontrib>Ogando, R.</creatorcontrib><creatorcontrib>Plazas, A. A.</creatorcontrib><creatorcontrib>Romer, A. K.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Scarpine, V.</creatorcontrib><creatorcontrib>Schubnell, M.</creatorcontrib><creatorcontrib>Smith, R. C.</creatorcontrib><creatorcontrib>Soares-Santos, M.</creatorcontrib><creatorcontrib>Sobreira, F.</creatorcontrib><creatorcontrib>Tarle, G.</creatorcontrib><creatorcontrib>Vikram, V.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Etherington, J.</au><au>Thomas, D.</au><au>Maraston, C.</au><au>Sevilla-Noarbe, I.</au><au>Bechtol, K.</au><au>Pforr, J.</au><au>Pellegrini, P.</au><au>Gschwend, J.</au><au>Carnero Rosell, A.</au><au>Maia, M. A. G.</au><au>da Costa, L. N.</au><au>Benoit-Lévy, A.</au><au>Swanson, M. E. C.</au><au>Hartley, W. G.</au><au>Abbott, T. M. C.</au><au>Abdalla, F. B.</au><au>Allam, S.</au><au>Bernstein, R. A.</au><au>Bertin, E.</au><au>Brooks, D.</au><au>Buckley-Geer, E.</au><au>Carrasco Kind, M.</au><au>Carretero, J.</au><au>Castander, F. J.</au><au>Crocce, M.</au><au>Cunha, C. E.</au><au>Desai, S.</au><au>Doel, P.</au><au>Eifler, T. F.</au><au>Evrard, A. E.</au><au>Fausti Neto, A.</au><au>Finley, D. A.</au><au>Flaugher, B.</au><au>Fosalba, P.</au><au>Frieman, J.</au><au>Gerdes, D. W.</au><au>Gruen, D.</au><au>Gruendl, R. A.</au><au>Gutierrez, G.</au><au>Honscheid, K.</au><au>James, D. J.</au><au>Kuehn, K.</au><au>Kuropatkin, N.</au><au>Lahav, O.</au><au>Lima, M.</au><au>Martini, P.</au><au>Melchior, P.</au><au>Miquel, R.</au><au>Mohr, J. J.</au><au>Nord, B.</au><au>Ogando, R.</au><au>Plazas, A. A.</au><au>Romer, A. K.</au><au>Rykoff, E. S.</au><au>Sanchez, E.</au><au>Scarpine, V.</au><au>Schubnell, M.</au><au>Smith, R. C.</au><au>Soares-Santos, M.</au><au>Sobreira, F.</au><au>Tarle, G.</au><au>Vikram, V.</au><au>Walker, A. R.</au><au>Zhang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>466</volume><issue>1</issue><spage>228</spage><epage>247</epage><pages>228-247</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 &lt; z &lt; 1.05. For z &lt; 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw3069</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (1), p.228-247
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_01582718v1
source Oxford Journals Open Access Collection
subjects Apertures
Astrophysics
Density
Environment
Galaxies
High density
Mathematical analysis
Mathematical models
Monte Carlo simulation
Photometry
Physics
Probability distribution
Red shift
Space telescopes
Star & galaxy formation
Stellar mass
title Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20dependence%20of%20the%20galaxy%20stellar%20mass%20function%20in%20the%20Dark%20Energy%20Survey%20Science%20Verification%20Data&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Etherington,%20J.&rft.date=2017-04-01&rft.volume=466&rft.issue=1&rft.spage=228&rft.epage=247&rft.pages=228-247&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw3069&rft_dat=%3Cproquest_TOX%3E1877812169%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868245652&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw3069&rfr_iscdi=true