Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration

In this paper, we consider the problem of blindly calibrating a mobile sensor network-i.e., determining the gain and the offset of each sensor-from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed nonnegat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal and information processing over networks 2018-12, Vol.4 (4), p.667-682
Hauptverfasser: Dorffer, Clement, Puigt, Matthieu, Delmaire, Gilles, Roussel, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 4
container_start_page 667
container_title IEEE transactions on signal and information processing over networks
container_volume 4
creator Dorffer, Clement
Puigt, Matthieu
Delmaire, Gilles
Roussel, Gilles
description In this paper, we consider the problem of blindly calibrating a mobile sensor network-i.e., determining the gain and the offset of each sensor-from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed nonnegative matrix factorization (NMF) problem with missing entries. In the considered framework, one matrix factor contains the calibration structure of the sensors-and especially the values of the sensed phenomenon-while the other one contains the calibration parameters of the whole sensor network. The available information is taken into account by using a specific parameterization of the NMF problem. Moreover, we also consider additional NMF constraints which can be independently taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed approaches is investigated through more than 5000 simulations and is shown to be accurate for the considered application and to outperform a multihop micro-calibration technique as well as a method based on low-rank matrix completion and nonnegative least squares.
doi_str_mv 10.1109/TSIPN.2018.2811962
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01580604v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8309302</ieee_id><sourcerecordid>oai_HAL_hal_01580604v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-786e4c78129d1a35fe52f39c6bb7f48e7a88bf1f8a1a7e490f8682f9fff2939d3</originalsourceid><addsrcrecordid>eNpNkFtLwzAUx4MoOOa-gL7k1YfOXNomeRzDucE6hU30LaTtiYt2jaRlXj693YXh07nw_x04P4SuKRlSStTdajl7WgwZoXLIJKUqZWeox7jgkRDp6_m__hINmuadEEITEQuleuhlVlsfNlDiha9reDOt2wLOTBvcN56YovXB_XZLX-MM2rUvG9zlceZzVwFeQt100wLaLx8-8NhULg_79BW6sKZqYHCsffQ8uV-Np9H88WE2Hs2jgsdJGwmZQlwISZkqqeGJhYRZroo0z4WNJQgjZW6plYYaAbEiVqaSWWWtZYqrkvfR7eHu2lT6M7iNCT_aG6eno7ne7bpXJUlJvGVdlh2yRfBNE8CeAEr0zqTem9Q7k_posoNuDpADgBMgOVGcMP4HWz1wfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration</title><source>IEEE Electronic Library (IEL)</source><creator>Dorffer, Clement ; Puigt, Matthieu ; Delmaire, Gilles ; Roussel, Gilles</creator><creatorcontrib>Dorffer, Clement ; Puigt, Matthieu ; Delmaire, Gilles ; Roussel, Gilles</creatorcontrib><description>In this paper, we consider the problem of blindly calibrating a mobile sensor network-i.e., determining the gain and the offset of each sensor-from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed nonnegative matrix factorization (NMF) problem with missing entries. In the considered framework, one matrix factor contains the calibration structure of the sensors-and especially the values of the sensed phenomenon-while the other one contains the calibration parameters of the whole sensor network. The available information is taken into account by using a specific parameterization of the NMF problem. Moreover, we also consider additional NMF constraints which can be independently taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed approaches is investigated through more than 5000 simulations and is shown to be accurate for the considered application and to outperform a multihop micro-calibration technique as well as a method based on low-rank matrix completion and nonnegative least squares.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2018.2811962</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Calibration ; Computer Science ; Electronic mail ; Geology ; Information processing ; matrix completion ; mobile crowdsensing ; mobile sensor calibration ; Nonnegative matrix factorization ; Signal and Image Processing ; Sparse representation ; wireless sensor network</subject><ispartof>IEEE transactions on signal and information processing over networks, 2018-12, Vol.4 (4), p.667-682</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-786e4c78129d1a35fe52f39c6bb7f48e7a88bf1f8a1a7e490f8682f9fff2939d3</citedby><cites>FETCH-LOGICAL-c345t-786e4c78129d1a35fe52f39c6bb7f48e7a88bf1f8a1a7e490f8682f9fff2939d3</cites><orcidid>0000-0001-9559-3408 ; 0000-0002-8531-1566 ; 0000-0002-3264-4981 ; 0000-0003-4425-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8309302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8309302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01580604$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorffer, Clement</creatorcontrib><creatorcontrib>Puigt, Matthieu</creatorcontrib><creatorcontrib>Delmaire, Gilles</creatorcontrib><creatorcontrib>Roussel, Gilles</creatorcontrib><title>Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>In this paper, we consider the problem of blindly calibrating a mobile sensor network-i.e., determining the gain and the offset of each sensor-from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed nonnegative matrix factorization (NMF) problem with missing entries. In the considered framework, one matrix factor contains the calibration structure of the sensors-and especially the values of the sensed phenomenon-while the other one contains the calibration parameters of the whole sensor network. The available information is taken into account by using a specific parameterization of the NMF problem. Moreover, we also consider additional NMF constraints which can be independently taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed approaches is investigated through more than 5000 simulations and is shown to be accurate for the considered application and to outperform a multihop micro-calibration technique as well as a method based on low-rank matrix completion and nonnegative least squares.</description><subject>Atmospheric modeling</subject><subject>Calibration</subject><subject>Computer Science</subject><subject>Electronic mail</subject><subject>Geology</subject><subject>Information processing</subject><subject>matrix completion</subject><subject>mobile crowdsensing</subject><subject>mobile sensor calibration</subject><subject>Nonnegative matrix factorization</subject><subject>Signal and Image Processing</subject><subject>Sparse representation</subject><subject>wireless sensor network</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLwzAUx4MoOOa-gL7k1YfOXNomeRzDucE6hU30LaTtiYt2jaRlXj693YXh07nw_x04P4SuKRlSStTdajl7WgwZoXLIJKUqZWeox7jgkRDp6_m__hINmuadEEITEQuleuhlVlsfNlDiha9reDOt2wLOTBvcN56YovXB_XZLX-MM2rUvG9zlceZzVwFeQt100wLaLx8-8NhULg_79BW6sKZqYHCsffQ8uV-Np9H88WE2Hs2jgsdJGwmZQlwISZkqqeGJhYRZroo0z4WNJQgjZW6plYYaAbEiVqaSWWWtZYqrkvfR7eHu2lT6M7iNCT_aG6eno7ne7bpXJUlJvGVdlh2yRfBNE8CeAEr0zqTem9Q7k_posoNuDpADgBMgOVGcMP4HWz1wfw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Dorffer, Clement</creator><creator>Puigt, Matthieu</creator><creator>Delmaire, Gilles</creator><creator>Roussel, Gilles</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9559-3408</orcidid><orcidid>https://orcid.org/0000-0002-8531-1566</orcidid><orcidid>https://orcid.org/0000-0002-3264-4981</orcidid><orcidid>https://orcid.org/0000-0003-4425-4507</orcidid></search><sort><creationdate>201812</creationdate><title>Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration</title><author>Dorffer, Clement ; Puigt, Matthieu ; Delmaire, Gilles ; Roussel, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-786e4c78129d1a35fe52f39c6bb7f48e7a88bf1f8a1a7e490f8682f9fff2939d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric modeling</topic><topic>Calibration</topic><topic>Computer Science</topic><topic>Electronic mail</topic><topic>Geology</topic><topic>Information processing</topic><topic>matrix completion</topic><topic>mobile crowdsensing</topic><topic>mobile sensor calibration</topic><topic>Nonnegative matrix factorization</topic><topic>Signal and Image Processing</topic><topic>Sparse representation</topic><topic>wireless sensor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorffer, Clement</creatorcontrib><creatorcontrib>Puigt, Matthieu</creatorcontrib><creatorcontrib>Delmaire, Gilles</creatorcontrib><creatorcontrib>Roussel, Gilles</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorffer, Clement</au><au>Puigt, Matthieu</au><au>Delmaire, Gilles</au><au>Roussel, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2018-12</date><risdate>2018</risdate><volume>4</volume><issue>4</issue><spage>667</spage><epage>682</epage><pages>667-682</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>In this paper, we consider the problem of blindly calibrating a mobile sensor network-i.e., determining the gain and the offset of each sensor-from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed nonnegative matrix factorization (NMF) problem with missing entries. In the considered framework, one matrix factor contains the calibration structure of the sensors-and especially the values of the sensed phenomenon-while the other one contains the calibration parameters of the whole sensor network. The available information is taken into account by using a specific parameterization of the NMF problem. Moreover, we also consider additional NMF constraints which can be independently taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed approaches is investigated through more than 5000 simulations and is shown to be accurate for the considered application and to outperform a multihop micro-calibration technique as well as a method based on low-rank matrix completion and nonnegative least squares.</abstract><pub>IEEE</pub><doi>10.1109/TSIPN.2018.2811962</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9559-3408</orcidid><orcidid>https://orcid.org/0000-0002-8531-1566</orcidid><orcidid>https://orcid.org/0000-0002-3264-4981</orcidid><orcidid>https://orcid.org/0000-0003-4425-4507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2018-12, Vol.4 (4), p.667-682
issn 2373-776X
2373-776X
2373-7778
language eng
recordid cdi_hal_primary_oai_HAL_hal_01580604v2
source IEEE Electronic Library (IEL)
subjects Atmospheric modeling
Calibration
Computer Science
Electronic mail
Geology
Information processing
matrix completion
mobile crowdsensing
mobile sensor calibration
Nonnegative matrix factorization
Signal and Image Processing
Sparse representation
wireless sensor network
title Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informed%20Nonnegative%20Matrix%20Factorization%20Methods%20for%20Mobile%20Sensor%20Network%20Calibration&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Dorffer,%20Clement&rft.date=2018-12&rft.volume=4&rft.issue=4&rft.spage=667&rft.epage=682&rft.pages=667-682&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2018.2811962&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01580604v2%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8309302&rfr_iscdi=true