Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat

[Display omitted] Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neuro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-03, Vol.15 (15), p.77-88
Hauptverfasser: Quittet, Marie-Sophie, Touzani, Omar, Sindji, Laurence, Cayon, Jérôme, Fillesoye, Fabien, Toutain, Jérôme, Divoux, Didier, Marteau, Léna, Lecocq, Myriam, Roussel, Simon, Montero-Menei, Claudia N., Bernaudin, Myriam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 15
container_start_page 77
container_title Acta biomaterialia
container_volume 15
creator Quittet, Marie-Sophie
Touzani, Omar
Sindji, Laurence
Cayon, Jérôme
Fillesoye, Fabien
Toutain, Jérôme
Divoux, Didier
Marteau, Léna
Lecocq, Myriam
Roussel, Simon
Montero-Menei, Claudia N.
Bernaudin, Myriam
description [Display omitted] Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs–VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.
doi_str_mv 10.1016/j.actbio.2014.12.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01577870v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114005819</els_id><sourcerecordid>1677999245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-2af34c5f98313a3ae7bcb0a41777a99f616406d747897992c9fbd24b32a4d65e3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqXwBgh5CRIz-N_xBqmqpi1SJTbA1rpxbhoPSTzYmUHzLjwsHqV0ibqyZX_3nuPrU1VvGV0zyvSn7Rr83IS45pTJNeNrysyz6pzVpl4ZpevnZW8kXxmq2Vn1KuctpaJmvH5ZnXGllBaanVd_Nl2Hfs4kdmTEjJPvjyMMJM84Eo_DQOYeE-yOH0mYCOQcfYA5xIn8DnNPdj2kEXwc4n3wMAxHUkyFA5Ix-BQ9pBQwZZJwQMhhuic_NjfXS6uJhOx7wEIWtRR_lqLY4nC6LJokwfy6etHBkPHNw3pRfb_efLu6Xd19vflydXm38krwecWhE9KrztaCCRCApvENBcmMMWBtp5mWVLdGmtoaa7m3XdNy2QgOstUKxUX1Yenbw-B2KYyQji5CcLeXd-50Rpkypjb0wAr7fmF3Kf7aY57dWN5RBgUTxn12TJuiYblUT0GFqC2z5gmo0lQqZm1B5YKWAeecsHt0zKg7JcNt3ZIMd0qGY7zYPym8e1DYNyO2j0X_olCAzwuAZdKH8m0u-1DygG1IJSGujeH_Cn8BVYnMLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656045199</pqid></control><display><type>article</type><title>Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Quittet, Marie-Sophie ; Touzani, Omar ; Sindji, Laurence ; Cayon, Jérôme ; Fillesoye, Fabien ; Toutain, Jérôme ; Divoux, Didier ; Marteau, Léna ; Lecocq, Myriam ; Roussel, Simon ; Montero-Menei, Claudia N. ; Bernaudin, Myriam</creator><creatorcontrib>Quittet, Marie-Sophie ; Touzani, Omar ; Sindji, Laurence ; Cayon, Jérôme ; Fillesoye, Fabien ; Toutain, Jérôme ; Divoux, Didier ; Marteau, Léna ; Lecocq, Myriam ; Roussel, Simon ; Montero-Menei, Claudia N. ; Bernaudin, Myriam</creatorcontrib><description>[Display omitted] Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs–VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.12.017</identifier><identifier>PMID: 25556361</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Angiogenesis ; Animals ; Behavior, Animal ; Biomedical materials ; Blood Vessels - drug effects ; Brain damage ; Brain Ischemia - complications ; Brain Ischemia - physiopathology ; Disease Models, Animal ; Drug Carriers - chemistry ; In vitro testing ; In vivo tests ; Infarction, Middle Cerebral Artery - complications ; Infarction, Middle Cerebral Artery - pathology ; Laminin - pharmacology ; Life Sciences ; Magnetic Resonance Imaging ; Male ; Mathematical models ; Mesenchymal Stem Cell Transplantation ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Microtubule-Associated Proteins - metabolism ; Neuropeptides - metabolism ; Pharmacologically active microcarriers ; Rats, Sprague-Dawley ; Recovery of Function - drug effects ; Releasing ; Stroke ; Stroke - drug therapy ; Stroke - etiology ; Stroke - physiopathology ; Strokes ; Surgical implants ; Therapy ; Treatment Outcome ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor A - therapeutic use ; VEGF</subject><ispartof>Acta biomaterialia, 2015-03, Vol.15 (15), p.77-88</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-2af34c5f98313a3ae7bcb0a41777a99f616406d747897992c9fbd24b32a4d65e3</citedby><cites>FETCH-LOGICAL-c532t-2af34c5f98313a3ae7bcb0a41777a99f616406d747897992c9fbd24b32a4d65e3</cites><orcidid>0000-0002-1373-6987 ; 0000-0003-0778-3397 ; 0000-0001-5449-4817 ; 0000-0001-9031-0907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706114005819$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25556361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01577870$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quittet, Marie-Sophie</creatorcontrib><creatorcontrib>Touzani, Omar</creatorcontrib><creatorcontrib>Sindji, Laurence</creatorcontrib><creatorcontrib>Cayon, Jérôme</creatorcontrib><creatorcontrib>Fillesoye, Fabien</creatorcontrib><creatorcontrib>Toutain, Jérôme</creatorcontrib><creatorcontrib>Divoux, Didier</creatorcontrib><creatorcontrib>Marteau, Léna</creatorcontrib><creatorcontrib>Lecocq, Myriam</creatorcontrib><creatorcontrib>Roussel, Simon</creatorcontrib><creatorcontrib>Montero-Menei, Claudia N.</creatorcontrib><creatorcontrib>Bernaudin, Myriam</creatorcontrib><title>Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs–VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biomedical materials</subject><subject>Blood Vessels - drug effects</subject><subject>Brain damage</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Drug Carriers - chemistry</subject><subject>In vitro testing</subject><subject>In vivo tests</subject><subject>Infarction, Middle Cerebral Artery - complications</subject><subject>Infarction, Middle Cerebral Artery - pathology</subject><subject>Laminin - pharmacology</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Neuropeptides - metabolism</subject><subject>Pharmacologically active microcarriers</subject><subject>Rats, Sprague-Dawley</subject><subject>Recovery of Function - drug effects</subject><subject>Releasing</subject><subject>Stroke</subject><subject>Stroke - drug therapy</subject><subject>Stroke - etiology</subject><subject>Stroke - physiopathology</subject><subject>Strokes</subject><subject>Surgical implants</subject><subject>Therapy</subject><subject>Treatment Outcome</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor A - therapeutic use</subject><subject>VEGF</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhSMEoqXwBgh5CRIz-N_xBqmqpi1SJTbA1rpxbhoPSTzYmUHzLjwsHqV0ibqyZX_3nuPrU1VvGV0zyvSn7Rr83IS45pTJNeNrysyz6pzVpl4ZpevnZW8kXxmq2Vn1KuctpaJmvH5ZnXGllBaanVd_Nl2Hfs4kdmTEjJPvjyMMJM84Eo_DQOYeE-yOH0mYCOQcfYA5xIn8DnNPdj2kEXwc4n3wMAxHUkyFA5Ix-BQ9pBQwZZJwQMhhuic_NjfXS6uJhOx7wEIWtRR_lqLY4nC6LJokwfy6etHBkPHNw3pRfb_efLu6Xd19vflydXm38krwecWhE9KrztaCCRCApvENBcmMMWBtp5mWVLdGmtoaa7m3XdNy2QgOstUKxUX1Yenbw-B2KYyQji5CcLeXd-50Rpkypjb0wAr7fmF3Kf7aY57dWN5RBgUTxn12TJuiYblUT0GFqC2z5gmo0lQqZm1B5YKWAeecsHt0zKg7JcNt3ZIMd0qGY7zYPym8e1DYNyO2j0X_olCAzwuAZdKH8m0u-1DygG1IJSGujeH_Cn8BVYnMLg</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Quittet, Marie-Sophie</creator><creator>Touzani, Omar</creator><creator>Sindji, Laurence</creator><creator>Cayon, Jérôme</creator><creator>Fillesoye, Fabien</creator><creator>Toutain, Jérôme</creator><creator>Divoux, Didier</creator><creator>Marteau, Léna</creator><creator>Lecocq, Myriam</creator><creator>Roussel, Simon</creator><creator>Montero-Menei, Claudia N.</creator><creator>Bernaudin, Myriam</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1373-6987</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid><orcidid>https://orcid.org/0000-0001-5449-4817</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid></search><sort><creationdate>201503</creationdate><title>Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat</title><author>Quittet, Marie-Sophie ; Touzani, Omar ; Sindji, Laurence ; Cayon, Jérôme ; Fillesoye, Fabien ; Toutain, Jérôme ; Divoux, Didier ; Marteau, Léna ; Lecocq, Myriam ; Roussel, Simon ; Montero-Menei, Claudia N. ; Bernaudin, Myriam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-2af34c5f98313a3ae7bcb0a41777a99f616406d747897992c9fbd24b32a4d65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biomedical materials</topic><topic>Blood Vessels - drug effects</topic><topic>Brain damage</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Drug Carriers - chemistry</topic><topic>In vitro testing</topic><topic>In vivo tests</topic><topic>Infarction, Middle Cerebral Artery - complications</topic><topic>Infarction, Middle Cerebral Artery - pathology</topic><topic>Laminin - pharmacology</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Neuropeptides - metabolism</topic><topic>Pharmacologically active microcarriers</topic><topic>Rats, Sprague-Dawley</topic><topic>Recovery of Function - drug effects</topic><topic>Releasing</topic><topic>Stroke</topic><topic>Stroke - drug therapy</topic><topic>Stroke - etiology</topic><topic>Stroke - physiopathology</topic><topic>Strokes</topic><topic>Surgical implants</topic><topic>Therapy</topic><topic>Treatment Outcome</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor A - therapeutic use</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quittet, Marie-Sophie</creatorcontrib><creatorcontrib>Touzani, Omar</creatorcontrib><creatorcontrib>Sindji, Laurence</creatorcontrib><creatorcontrib>Cayon, Jérôme</creatorcontrib><creatorcontrib>Fillesoye, Fabien</creatorcontrib><creatorcontrib>Toutain, Jérôme</creatorcontrib><creatorcontrib>Divoux, Didier</creatorcontrib><creatorcontrib>Marteau, Léna</creatorcontrib><creatorcontrib>Lecocq, Myriam</creatorcontrib><creatorcontrib>Roussel, Simon</creatorcontrib><creatorcontrib>Montero-Menei, Claudia N.</creatorcontrib><creatorcontrib>Bernaudin, Myriam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quittet, Marie-Sophie</au><au>Touzani, Omar</au><au>Sindji, Laurence</au><au>Cayon, Jérôme</au><au>Fillesoye, Fabien</au><au>Toutain, Jérôme</au><au>Divoux, Didier</au><au>Marteau, Léna</au><au>Lecocq, Myriam</au><au>Roussel, Simon</au><au>Montero-Menei, Claudia N.</au><au>Bernaudin, Myriam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-03</date><risdate>2015</risdate><volume>15</volume><issue>15</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs–VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25556361</pmid><doi>10.1016/j.actbio.2014.12.017</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1373-6987</orcidid><orcidid>https://orcid.org/0000-0003-0778-3397</orcidid><orcidid>https://orcid.org/0000-0001-5449-4817</orcidid><orcidid>https://orcid.org/0000-0001-9031-0907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2015-03, Vol.15 (15), p.77-88
issn 1742-7061
1878-7568
language eng
recordid cdi_hal_primary_oai_HAL_hal_01577870v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Angiogenesis
Animals
Behavior, Animal
Biomedical materials
Blood Vessels - drug effects
Brain damage
Brain Ischemia - complications
Brain Ischemia - physiopathology
Disease Models, Animal
Drug Carriers - chemistry
In vitro testing
In vivo tests
Infarction, Middle Cerebral Artery - complications
Infarction, Middle Cerebral Artery - pathology
Laminin - pharmacology
Life Sciences
Magnetic Resonance Imaging
Male
Mathematical models
Mesenchymal Stem Cell Transplantation
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Microtubule-Associated Proteins - metabolism
Neuropeptides - metabolism
Pharmacologically active microcarriers
Rats, Sprague-Dawley
Recovery of Function - drug effects
Releasing
Stroke
Stroke - drug therapy
Stroke - etiology
Stroke - physiopathology
Strokes
Surgical implants
Therapy
Treatment Outcome
Vascular Endothelial Growth Factor A - pharmacology
Vascular Endothelial Growth Factor A - therapeutic use
VEGF
title Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20mesenchymal%20stem%20cell%20therapy,%20in%20association%20with%20pharmacologically%20active%20microcarriers%20releasing%20VEGF,%20in%20an%20ischaemic%20stroke%20model%20in%20the%20rat&rft.jtitle=Acta%20biomaterialia&rft.au=Quittet,%20Marie-Sophie&rft.date=2015-03&rft.volume=15&rft.issue=15&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.12.017&rft_dat=%3Cproquest_hal_p%3E1677999245%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656045199&rft_id=info:pmid/25556361&rft_els_id=S1742706114005819&rfr_iscdi=true