Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure

Self-assembly of core-shell nanoparticles (NPs) at liquid-liquid interfaces is rapidly emerging as a strategy for the production of novel nano-materials bearing vast potential for applications, including membrane fabrication, drug delivery and emulsion stabilization. The development of such nanopart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2013-01, Vol.9 (14), p.3789-3797
Hauptverfasser: Isa, Lucio, Calzolari, Davide C. E., Pontoni, Diego, Gillich, Torben, Nelson, Adrienne, Zirbs, Ronald, Sánchez-Ferrer, Antoni, Mezzenga, Raffaele, Reimhult, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3797
container_issue 14
container_start_page 3789
container_title Soft matter
container_volume 9
creator Isa, Lucio
Calzolari, Davide C. E.
Pontoni, Diego
Gillich, Torben
Nelson, Adrienne
Zirbs, Ronald
Sánchez-Ferrer, Antoni
Mezzenga, Raffaele
Reimhult, Erik
description Self-assembly of core-shell nanoparticles (NPs) at liquid-liquid interfaces is rapidly emerging as a strategy for the production of novel nano-materials bearing vast potential for applications, including membrane fabrication, drug delivery and emulsion stabilization. The development of such nanoparticle-based materials is facilitated by structural characterization techniques that are able to monitor in situthe self-assembly process during its evolution. Here, we present an in situhigh-energy X-ray reflectivity study of the evolution of the vertical position (contact angle) and inter-particle spacing of core-shell iron oxide-poly(ethylene glycol) (PEG) nanoparticles adsorbing at flat, horizontal buried water-n-decane interfaces. The results are compared with time-resolved interfacial tension data acquired with the conventional pendant drop method. We investigate in particular the effect of varying polymer molecular weights (2-5 kDa) and architectures (linear vs.dendritic) on the self-assembly process and the final structure of the interfacially adsorbed NP monolayers. Linear PEG particles adsorb more rapidly than dendritic PEG ones and reach full interface coverage and stable NP monolayer structure, while dendritic PEG particles undergo a slower adsorption process, which is not completed within the experimental time window of similar to 6 hours. All NPs are highly hydrophilic with effective contact angles that depend weakly on PEG molecular weight and architecture. Conversely, the in-plane NP separation depends strongly on PEG molecular weight. The measured inter-particle separation at full interface coverage yields low iron oxide core content, indicating a strong deformation and flattening of the linear PEG shell at the interface. This finding is supported by modeling and has direct implications for materials fabrication, e.g.for the realization of core-shell NP membranes by in situcross-linking of the polymer shells.
doi_str_mv 10.1039/c3sm27367a
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01572952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323260313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f920c0af2ed6fa7c6d74a9455c903bde74dc782e664337540fef21396e06a1e23</originalsourceid><addsrcrecordid>eNpFUcFq3DAQNSWBJpte-gU6toFtJI0srXsLS9oEFnpJIDczlUesimw5khzYW8-55g_zJfF2S3Kax5v3Hsy8qvos-DfBobmwkHtpQBv8UJ0Io9RSr9Tq6A3D_cfqNOc_nMNKCX1SPa1jope_z3lLIbABhzhiKt4GYn0cYsAdpcywsDHggIkF_zD5bjYcAPNDoeTQUv7OyDmyJbPo2BjDrqfEMNmtLzM7JWJxYGVL7xbWe5tiLmn6tz-rjh2GTJ_-z0V19-Pqdn293Pz6ebO-3CwtgCpL10huOTpJnXZorO6MwkbVtW04_O7IqM6alSStFYCpFXfkpIBGE9coSMKi-nrI3WJox-R7TLs2om-vLzftnuOiNrKp5aOYtV8O2jHFh4lyaXuf7fwqHChOuRUgQWoOAmbp-UG6vykncm_Zgrf7ctr3cuAV-duHmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323260313</pqid></control><display><type>article</type><title>Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Isa, Lucio ; Calzolari, Davide C. E. ; Pontoni, Diego ; Gillich, Torben ; Nelson, Adrienne ; Zirbs, Ronald ; Sánchez-Ferrer, Antoni ; Mezzenga, Raffaele ; Reimhult, Erik</creator><creatorcontrib>Isa, Lucio ; Calzolari, Davide C. E. ; Pontoni, Diego ; Gillich, Torben ; Nelson, Adrienne ; Zirbs, Ronald ; Sánchez-Ferrer, Antoni ; Mezzenga, Raffaele ; Reimhult, Erik</creatorcontrib><description>Self-assembly of core-shell nanoparticles (NPs) at liquid-liquid interfaces is rapidly emerging as a strategy for the production of novel nano-materials bearing vast potential for applications, including membrane fabrication, drug delivery and emulsion stabilization. The development of such nanoparticle-based materials is facilitated by structural characterization techniques that are able to monitor in situthe self-assembly process during its evolution. Here, we present an in situhigh-energy X-ray reflectivity study of the evolution of the vertical position (contact angle) and inter-particle spacing of core-shell iron oxide-poly(ethylene glycol) (PEG) nanoparticles adsorbing at flat, horizontal buried water-n-decane interfaces. The results are compared with time-resolved interfacial tension data acquired with the conventional pendant drop method. We investigate in particular the effect of varying polymer molecular weights (2-5 kDa) and architectures (linear vs.dendritic) on the self-assembly process and the final structure of the interfacially adsorbed NP monolayers. Linear PEG particles adsorb more rapidly than dendritic PEG ones and reach full interface coverage and stable NP monolayer structure, while dendritic PEG particles undergo a slower adsorption process, which is not completed within the experimental time window of similar to 6 hours. All NPs are highly hydrophilic with effective contact angles that depend weakly on PEG molecular weight and architecture. Conversely, the in-plane NP separation depends strongly on PEG molecular weight. The measured inter-particle separation at full interface coverage yields low iron oxide core content, indicating a strong deformation and flattening of the linear PEG shell at the interface. This finding is supported by modeling and has direct implications for materials fabrication, e.g.for the realization of core-shell NP membranes by in situcross-linking of the polymer shells.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c3sm27367a</identifier><language>eng</language><publisher>Royal Society of Chemistry</publisher><subject>Architecture ; Chemical Sciences ; Contact angle ; Molecular weight ; Monolayers ; Nanocomposites ; Nanomaterials ; Nanostructure ; Self assembly</subject><ispartof>Soft matter, 2013-01, Vol.9 (14), p.3789-3797</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f920c0af2ed6fa7c6d74a9455c903bde74dc782e664337540fef21396e06a1e23</citedby><cites>FETCH-LOGICAL-c334t-f920c0af2ed6fa7c6d74a9455c903bde74dc782e664337540fef21396e06a1e23</cites><orcidid>0000-0002-5739-2610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01572952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Isa, Lucio</creatorcontrib><creatorcontrib>Calzolari, Davide C. E.</creatorcontrib><creatorcontrib>Pontoni, Diego</creatorcontrib><creatorcontrib>Gillich, Torben</creatorcontrib><creatorcontrib>Nelson, Adrienne</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Sánchez-Ferrer, Antoni</creatorcontrib><creatorcontrib>Mezzenga, Raffaele</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><title>Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure</title><title>Soft matter</title><description>Self-assembly of core-shell nanoparticles (NPs) at liquid-liquid interfaces is rapidly emerging as a strategy for the production of novel nano-materials bearing vast potential for applications, including membrane fabrication, drug delivery and emulsion stabilization. The development of such nanoparticle-based materials is facilitated by structural characterization techniques that are able to monitor in situthe self-assembly process during its evolution. Here, we present an in situhigh-energy X-ray reflectivity study of the evolution of the vertical position (contact angle) and inter-particle spacing of core-shell iron oxide-poly(ethylene glycol) (PEG) nanoparticles adsorbing at flat, horizontal buried water-n-decane interfaces. The results are compared with time-resolved interfacial tension data acquired with the conventional pendant drop method. We investigate in particular the effect of varying polymer molecular weights (2-5 kDa) and architectures (linear vs.dendritic) on the self-assembly process and the final structure of the interfacially adsorbed NP monolayers. Linear PEG particles adsorb more rapidly than dendritic PEG ones and reach full interface coverage and stable NP monolayer structure, while dendritic PEG particles undergo a slower adsorption process, which is not completed within the experimental time window of similar to 6 hours. All NPs are highly hydrophilic with effective contact angles that depend weakly on PEG molecular weight and architecture. Conversely, the in-plane NP separation depends strongly on PEG molecular weight. The measured inter-particle separation at full interface coverage yields low iron oxide core content, indicating a strong deformation and flattening of the linear PEG shell at the interface. This finding is supported by modeling and has direct implications for materials fabrication, e.g.for the realization of core-shell NP membranes by in situcross-linking of the polymer shells.</description><subject>Architecture</subject><subject>Chemical Sciences</subject><subject>Contact angle</subject><subject>Molecular weight</subject><subject>Monolayers</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Self assembly</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFUcFq3DAQNSWBJpte-gU6toFtJI0srXsLS9oEFnpJIDczlUesimw5khzYW8-55g_zJfF2S3Kax5v3Hsy8qvos-DfBobmwkHtpQBv8UJ0Io9RSr9Tq6A3D_cfqNOc_nMNKCX1SPa1jope_z3lLIbABhzhiKt4GYn0cYsAdpcywsDHggIkF_zD5bjYcAPNDoeTQUv7OyDmyJbPo2BjDrqfEMNmtLzM7JWJxYGVL7xbWe5tiLmn6tz-rjh2GTJ_-z0V19-Pqdn293Pz6ebO-3CwtgCpL10huOTpJnXZorO6MwkbVtW04_O7IqM6alSStFYCpFXfkpIBGE9coSMKi-nrI3WJox-R7TLs2om-vLzftnuOiNrKp5aOYtV8O2jHFh4lyaXuf7fwqHChOuRUgQWoOAmbp-UG6vykncm_Zgrf7ctr3cuAV-duHmw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Isa, Lucio</creator><creator>Calzolari, Davide C. E.</creator><creator>Pontoni, Diego</creator><creator>Gillich, Torben</creator><creator>Nelson, Adrienne</creator><creator>Zirbs, Ronald</creator><creator>Sánchez-Ferrer, Antoni</creator><creator>Mezzenga, Raffaele</creator><creator>Reimhult, Erik</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5739-2610</orcidid></search><sort><creationdate>20130101</creationdate><title>Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure</title><author>Isa, Lucio ; Calzolari, Davide C. E. ; Pontoni, Diego ; Gillich, Torben ; Nelson, Adrienne ; Zirbs, Ronald ; Sánchez-Ferrer, Antoni ; Mezzenga, Raffaele ; Reimhult, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f920c0af2ed6fa7c6d74a9455c903bde74dc782e664337540fef21396e06a1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Architecture</topic><topic>Chemical Sciences</topic><topic>Contact angle</topic><topic>Molecular weight</topic><topic>Monolayers</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Self assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isa, Lucio</creatorcontrib><creatorcontrib>Calzolari, Davide C. E.</creatorcontrib><creatorcontrib>Pontoni, Diego</creatorcontrib><creatorcontrib>Gillich, Torben</creatorcontrib><creatorcontrib>Nelson, Adrienne</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Sánchez-Ferrer, Antoni</creatorcontrib><creatorcontrib>Mezzenga, Raffaele</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isa, Lucio</au><au>Calzolari, Davide C. E.</au><au>Pontoni, Diego</au><au>Gillich, Torben</au><au>Nelson, Adrienne</au><au>Zirbs, Ronald</au><au>Sánchez-Ferrer, Antoni</au><au>Mezzenga, Raffaele</au><au>Reimhult, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure</atitle><jtitle>Soft matter</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>9</volume><issue>14</issue><spage>3789</spage><epage>3797</epage><pages>3789-3797</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Self-assembly of core-shell nanoparticles (NPs) at liquid-liquid interfaces is rapidly emerging as a strategy for the production of novel nano-materials bearing vast potential for applications, including membrane fabrication, drug delivery and emulsion stabilization. The development of such nanoparticle-based materials is facilitated by structural characterization techniques that are able to monitor in situthe self-assembly process during its evolution. Here, we present an in situhigh-energy X-ray reflectivity study of the evolution of the vertical position (contact angle) and inter-particle spacing of core-shell iron oxide-poly(ethylene glycol) (PEG) nanoparticles adsorbing at flat, horizontal buried water-n-decane interfaces. The results are compared with time-resolved interfacial tension data acquired with the conventional pendant drop method. We investigate in particular the effect of varying polymer molecular weights (2-5 kDa) and architectures (linear vs.dendritic) on the self-assembly process and the final structure of the interfacially adsorbed NP monolayers. Linear PEG particles adsorb more rapidly than dendritic PEG ones and reach full interface coverage and stable NP monolayer structure, while dendritic PEG particles undergo a slower adsorption process, which is not completed within the experimental time window of similar to 6 hours. All NPs are highly hydrophilic with effective contact angles that depend weakly on PEG molecular weight and architecture. Conversely, the in-plane NP separation depends strongly on PEG molecular weight. The measured inter-particle separation at full interface coverage yields low iron oxide core content, indicating a strong deformation and flattening of the linear PEG shell at the interface. This finding is supported by modeling and has direct implications for materials fabrication, e.g.for the realization of core-shell NP membranes by in situcross-linking of the polymer shells.</abstract><pub>Royal Society of Chemistry</pub><doi>10.1039/c3sm27367a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5739-2610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2013-01, Vol.9 (14), p.3789-3797
issn 1744-683X
1744-6848
language eng
recordid cdi_hal_primary_oai_HAL_hal_01572952v1
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Architecture
Chemical Sciences
Contact angle
Molecular weight
Monolayers
Nanocomposites
Nanomaterials
Nanostructure
Self assembly
title Core–shell nanoparticle monolayers at planar liquid–liquid interfaces: effects of polymer architecture on the interface microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%E2%80%93shell%20nanoparticle%20monolayers%20at%20planar%20liquid%E2%80%93liquid%20interfaces:%20effects%20of%20polymer%20architecture%20on%20the%20interface%20microstructure&rft.jtitle=Soft%20matter&rft.au=Isa,%20Lucio&rft.date=2013-01-01&rft.volume=9&rft.issue=14&rft.spage=3789&rft.epage=3797&rft.pages=3789-3797&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c3sm27367a&rft_dat=%3Cproquest_hal_p%3E1323260313%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323260313&rft_id=info:pmid/&rfr_iscdi=true