Riesz-based orientation of localizable Gaussian fields

In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2021-01, Vol.50, p.353-385
Hauptverfasser: Polisano, K., Clausel, M., Perrier, V., Condat, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue
container_start_page 353
container_title Applied and computational harmonic analysis
container_volume 50
creator Polisano, K.
Clausel, M.
Perrier, V.
Condat, L.
description In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.
doi_str_mv 10.1016/j.acha.2019.08.007
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01570978v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1063520319301794</els_id><sourcerecordid>S1063520319301794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GmvHnadJJtNAl5K0SoUBFHwFibZLE1ZG0nWgn16d6l49DQ_w_8NzEfINYWKAm1utxW6DVYMqK5AVQDyhMwo6KZsgL-fTrnhpWDAz8lFzlsASmuhZ6R5CT4fSovZt0VMwe8GHELcFbEr-uiwDwe0vS9W-JVzwF3RBd-3-ZKcddhnf_U75-Tt4f51-Viun1dPy8W6dJzpoWRgQYhGSKGtVKqWNffMSlQSJbZWq1YJKhRqDramLdXO-05ZhlhT1tiaz8nN8e4Ge_OZwgembxMxmMfF2kw7oEKClmrPxy47dl2KOSff_QEUzGTJbM1kyUyWDCgzWhqhuyPkxy_2wSeT3SjB-TYk7wbTxvAf_gNrKW7b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Riesz-based orientation of localizable Gaussian fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</creator><creatorcontrib>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</creatorcontrib><description>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1016/j.acha.2019.08.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anisotropy function ; Classical Analysis and ODEs ; Fractional fields ; H-sssi fields ; Localizable fields ; Mathematics ; Orientation vector ; Riesz analysis ; Structure tensor ; Tangent fields</subject><ispartof>Applied and computational harmonic analysis, 2021-01, Vol.50, p.353-385</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</cites><orcidid>0000-0001-7087-1002 ; 0000-0002-1115-7308 ; 0000-0002-5329-0801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acha.2019.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01570978$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Polisano, K.</creatorcontrib><creatorcontrib>Clausel, M.</creatorcontrib><creatorcontrib>Perrier, V.</creatorcontrib><creatorcontrib>Condat, L.</creatorcontrib><title>Riesz-based orientation of localizable Gaussian fields</title><title>Applied and computational harmonic analysis</title><description>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</description><subject>Anisotropy function</subject><subject>Classical Analysis and ODEs</subject><subject>Fractional fields</subject><subject>H-sssi fields</subject><subject>Localizable fields</subject><subject>Mathematics</subject><subject>Orientation vector</subject><subject>Riesz analysis</subject><subject>Structure tensor</subject><subject>Tangent fields</subject><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GmvHnadJJtNAl5K0SoUBFHwFibZLE1ZG0nWgn16d6l49DQ_w_8NzEfINYWKAm1utxW6DVYMqK5AVQDyhMwo6KZsgL-fTrnhpWDAz8lFzlsASmuhZ6R5CT4fSovZt0VMwe8GHELcFbEr-uiwDwe0vS9W-JVzwF3RBd-3-ZKcddhnf_U75-Tt4f51-Viun1dPy8W6dJzpoWRgQYhGSKGtVKqWNffMSlQSJbZWq1YJKhRqDramLdXO-05ZhlhT1tiaz8nN8e4Ge_OZwgembxMxmMfF2kw7oEKClmrPxy47dl2KOSff_QEUzGTJbM1kyUyWDCgzWhqhuyPkxy_2wSeT3SjB-TYk7wbTxvAf_gNrKW7b</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Polisano, K.</creator><creator>Clausel, M.</creator><creator>Perrier, V.</creator><creator>Condat, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7087-1002</orcidid><orcidid>https://orcid.org/0000-0002-1115-7308</orcidid><orcidid>https://orcid.org/0000-0002-5329-0801</orcidid></search><sort><creationdate>202101</creationdate><title>Riesz-based orientation of localizable Gaussian fields</title><author>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy function</topic><topic>Classical Analysis and ODEs</topic><topic>Fractional fields</topic><topic>H-sssi fields</topic><topic>Localizable fields</topic><topic>Mathematics</topic><topic>Orientation vector</topic><topic>Riesz analysis</topic><topic>Structure tensor</topic><topic>Tangent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polisano, K.</creatorcontrib><creatorcontrib>Clausel, M.</creatorcontrib><creatorcontrib>Perrier, V.</creatorcontrib><creatorcontrib>Condat, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polisano, K.</au><au>Clausel, M.</au><au>Perrier, V.</au><au>Condat, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riesz-based orientation of localizable Gaussian fields</atitle><jtitle>Applied and computational harmonic analysis</jtitle><date>2021-01</date><risdate>2021</risdate><volume>50</volume><spage>353</spage><epage>385</epage><pages>353-385</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.acha.2019.08.007</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-7087-1002</orcidid><orcidid>https://orcid.org/0000-0002-1115-7308</orcidid><orcidid>https://orcid.org/0000-0002-5329-0801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5203
ispartof Applied and computational harmonic analysis, 2021-01, Vol.50, p.353-385
issn 1063-5203
1096-603X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01570978v3
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy function
Classical Analysis and ODEs
Fractional fields
H-sssi fields
Localizable fields
Mathematics
Orientation vector
Riesz analysis
Structure tensor
Tangent fields
title Riesz-based orientation of localizable Gaussian fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riesz-based%20orientation%20of%20localizable%20Gaussian%20fields&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=Polisano,%20K.&rft.date=2021-01&rft.volume=50&rft.spage=353&rft.epage=385&rft.pages=353-385&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1016/j.acha.2019.08.007&rft_dat=%3Celsevier_hal_p%3ES1063520319301794%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1063520319301794&rfr_iscdi=true