Riesz-based orientation of localizable Gaussian fields
In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientat...
Gespeichert in:
Veröffentlicht in: | Applied and computational harmonic analysis 2021-01, Vol.50, p.353-385 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | |
container_start_page | 353 |
container_title | Applied and computational harmonic analysis |
container_volume | 50 |
creator | Polisano, K. Clausel, M. Perrier, V. Condat, L. |
description | In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools. |
doi_str_mv | 10.1016/j.acha.2019.08.007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01570978v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1063520319301794</els_id><sourcerecordid>S1063520319301794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GmvHnadJJtNAl5K0SoUBFHwFibZLE1ZG0nWgn16d6l49DQ_w_8NzEfINYWKAm1utxW6DVYMqK5AVQDyhMwo6KZsgL-fTrnhpWDAz8lFzlsASmuhZ6R5CT4fSovZt0VMwe8GHELcFbEr-uiwDwe0vS9W-JVzwF3RBd-3-ZKcddhnf_U75-Tt4f51-Viun1dPy8W6dJzpoWRgQYhGSKGtVKqWNffMSlQSJbZWq1YJKhRqDramLdXO-05ZhlhT1tiaz8nN8e4Ge_OZwgembxMxmMfF2kw7oEKClmrPxy47dl2KOSff_QEUzGTJbM1kyUyWDCgzWhqhuyPkxy_2wSeT3SjB-TYk7wbTxvAf_gNrKW7b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Riesz-based orientation of localizable Gaussian fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</creator><creatorcontrib>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</creatorcontrib><description>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1016/j.acha.2019.08.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anisotropy function ; Classical Analysis and ODEs ; Fractional fields ; H-sssi fields ; Localizable fields ; Mathematics ; Orientation vector ; Riesz analysis ; Structure tensor ; Tangent fields</subject><ispartof>Applied and computational harmonic analysis, 2021-01, Vol.50, p.353-385</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</cites><orcidid>0000-0001-7087-1002 ; 0000-0002-1115-7308 ; 0000-0002-5329-0801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acha.2019.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01570978$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Polisano, K.</creatorcontrib><creatorcontrib>Clausel, M.</creatorcontrib><creatorcontrib>Perrier, V.</creatorcontrib><creatorcontrib>Condat, L.</creatorcontrib><title>Riesz-based orientation of localizable Gaussian fields</title><title>Applied and computational harmonic analysis</title><description>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</description><subject>Anisotropy function</subject><subject>Classical Analysis and ODEs</subject><subject>Fractional fields</subject><subject>H-sssi fields</subject><subject>Localizable fields</subject><subject>Mathematics</subject><subject>Orientation vector</subject><subject>Riesz analysis</subject><subject>Structure tensor</subject><subject>Tangent fields</subject><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GmvHnadJJtNAl5K0SoUBFHwFibZLE1ZG0nWgn16d6l49DQ_w_8NzEfINYWKAm1utxW6DVYMqK5AVQDyhMwo6KZsgL-fTrnhpWDAz8lFzlsASmuhZ6R5CT4fSovZt0VMwe8GHELcFbEr-uiwDwe0vS9W-JVzwF3RBd-3-ZKcddhnf_U75-Tt4f51-Viun1dPy8W6dJzpoWRgQYhGSKGtVKqWNffMSlQSJbZWq1YJKhRqDramLdXO-05ZhlhT1tiaz8nN8e4Ge_OZwgembxMxmMfF2kw7oEKClmrPxy47dl2KOSff_QEUzGTJbM1kyUyWDCgzWhqhuyPkxy_2wSeT3SjB-TYk7wbTxvAf_gNrKW7b</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Polisano, K.</creator><creator>Clausel, M.</creator><creator>Perrier, V.</creator><creator>Condat, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7087-1002</orcidid><orcidid>https://orcid.org/0000-0002-1115-7308</orcidid><orcidid>https://orcid.org/0000-0002-5329-0801</orcidid></search><sort><creationdate>202101</creationdate><title>Riesz-based orientation of localizable Gaussian fields</title><author>Polisano, K. ; Clausel, M. ; Perrier, V. ; Condat, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-20b05565759b7884743e2b7a87a7adb98d85158a930b41d19ceef8b2aa4126b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy function</topic><topic>Classical Analysis and ODEs</topic><topic>Fractional fields</topic><topic>H-sssi fields</topic><topic>Localizable fields</topic><topic>Mathematics</topic><topic>Orientation vector</topic><topic>Riesz analysis</topic><topic>Structure tensor</topic><topic>Tangent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polisano, K.</creatorcontrib><creatorcontrib>Clausel, M.</creatorcontrib><creatorcontrib>Perrier, V.</creatorcontrib><creatorcontrib>Condat, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polisano, K.</au><au>Clausel, M.</au><au>Perrier, V.</au><au>Condat, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riesz-based orientation of localizable Gaussian fields</atitle><jtitle>Applied and computational harmonic analysis</jtitle><date>2021-01</date><risdate>2021</risdate><volume>50</volume><spage>353</spage><epage>385</epage><pages>353-385</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on a Riesz analysis of these fields, with isotropic zero-mean analysis functions. We propose a structure tensor formulation and provide an intrinsic definition of the orientation vector as eigenvector of this tensor. That is, we show that the orientation vector does not depend on the analysis function, but only on the anisotropy encoded in the spectral density of the field. Then, we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.acha.2019.08.007</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-7087-1002</orcidid><orcidid>https://orcid.org/0000-0002-1115-7308</orcidid><orcidid>https://orcid.org/0000-0002-5329-0801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-5203 |
ispartof | Applied and computational harmonic analysis, 2021-01, Vol.50, p.353-385 |
issn | 1063-5203 1096-603X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01570978v3 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anisotropy function Classical Analysis and ODEs Fractional fields H-sssi fields Localizable fields Mathematics Orientation vector Riesz analysis Structure tensor Tangent fields |
title | Riesz-based orientation of localizable Gaussian fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riesz-based%20orientation%20of%20localizable%20Gaussian%20fields&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=Polisano,%20K.&rft.date=2021-01&rft.volume=50&rft.spage=353&rft.epage=385&rft.pages=353-385&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1016/j.acha.2019.08.007&rft_dat=%3Celsevier_hal_p%3ES1063520319301794%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1063520319301794&rfr_iscdi=true |