Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)
Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanie...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2017-08, Vol.172 (8), p.1, Article 59 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Contributions to mineralogy and petrology |
container_volume | 172 |
creator | Huraiová, Monika Paquette, Jean-Louis Konečný, Patrik Gannoun, Abdel-Mouhcine Hurai, Vratislav |
description | Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A
1
-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a |
doi_str_mv | 10.1007/s00410-017-1379-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01558899v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501396660</galeid><sourcerecordid>A501396660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-5a1ab856ebe2f60bd41255b259e3614a53c392484ba0cce206ccdb6fe678a5bf3</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEEkvhAbhZ4kIlUuwkduLjUtEu0kpUgp6tiXeSdcnawfZWLKe-A4_BW_EkOA3iQ1pkyfaMf_-xxzNZ9pzRM0Zp_TpQWjGaU1bnrKxlXj3IFqwqi5xKUT_MFpSm01pK-Th7EsINTXYj-SL7folOb3FnQvSHV2RnLHoYXJ_2YDfkq_HaWXL94-7bVZumVUdMcNGNGIixZJzgfRK5fSDLPB5GJL0HayKSL2jdYOL2HrwajNNocYozYLrs3iItBBhiIK4j1vm4RZ9QsNZZA5a8gZCkLz8M7hY-GTh9mj3qYAj47Nd6kl1fvP14vsrX7y_fnS_XOVR1E3MODNqGC2yx6ARtNxUrOG8LLrEUrAJe6lIWVVO1QLXGggqtN63oUNQN8LYrT7LTOe4WBjV6swN_UA6MWi3XavJRxnnTSHnLEvtiZkfvPu8xRHXj9t6m5ykmmZCciYb_oXoYUBnbuehBp0_XaskpK6UQgiYqP0L1OJfEYmeS-x_-7AifxibVUx8VsFmgvQvBY_c7O0bV1EZqbqOUYK2mNlJV0hSzJiTW9uj_SvC_op-sw83k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916951685</pqid></control><display><type>article</type><title>Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huraiová, Monika ; Paquette, Jean-Louis ; Konečný, Patrik ; Gannoun, Abdel-Mouhcine ; Hurai, Vratislav</creator><creatorcontrib>Huraiová, Monika ; Paquette, Jean-Louis ; Konečný, Patrik ; Gannoun, Abdel-Mouhcine ; Hurai, Vratislav</creatorcontrib><description>Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A
1
-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A
1
-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A
2
-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-017-1379-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkali basalts ; Basalt ; Chronology ; Continental margins ; Crystallization ; Diagnostic systems ; Earth and Environmental Science ; Earth Sciences ; Feldspars ; Geochemistry ; Geochronometry ; Geological time ; Geology ; Granite ; Hydrothermal alteration ; Igneous rocks ; Ilmenite ; Isotopes ; Lava ; Magma ; Magnetite ; Mineral Resources ; Mineralogy ; Minerals ; Niobium ; Original Paper ; Orogeny ; Petrology ; Plagioclase ; Pleistocene ; Pliocene ; Radiometric dating ; Rifting ; Rubidium ; Sciences of the Universe ; Silicates ; Solid solutions ; Thermodynamic models ; Trace elements ; Xenoliths ; Zircon ; Zirconium</subject><ispartof>Contributions to mineralogy and petrology, 2017-08, Vol.172 (8), p.1, Article 59</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Contributions to Mineralogy and Petrology is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-5a1ab856ebe2f60bd41255b259e3614a53c392484ba0cce206ccdb6fe678a5bf3</citedby><cites>FETCH-LOGICAL-a478t-5a1ab856ebe2f60bd41255b259e3614a53c392484ba0cce206ccdb6fe678a5bf3</cites><orcidid>0000-0002-7605-7519 ; 0000-0003-4059-730X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-017-1379-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-017-1379-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01558899$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huraiová, Monika</creatorcontrib><creatorcontrib>Paquette, Jean-Louis</creatorcontrib><creatorcontrib>Konečný, Patrik</creatorcontrib><creatorcontrib>Gannoun, Abdel-Mouhcine</creatorcontrib><creatorcontrib>Hurai, Vratislav</creatorcontrib><title>Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A
1
-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A
1
-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A
2
-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.</description><subject>Alkali basalts</subject><subject>Basalt</subject><subject>Chronology</subject><subject>Continental margins</subject><subject>Crystallization</subject><subject>Diagnostic systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Feldspars</subject><subject>Geochemistry</subject><subject>Geochronometry</subject><subject>Geological time</subject><subject>Geology</subject><subject>Granite</subject><subject>Hydrothermal alteration</subject><subject>Igneous rocks</subject><subject>Ilmenite</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Magma</subject><subject>Magnetite</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Niobium</subject><subject>Original Paper</subject><subject>Orogeny</subject><subject>Petrology</subject><subject>Plagioclase</subject><subject>Pleistocene</subject><subject>Pliocene</subject><subject>Radiometric dating</subject><subject>Rifting</subject><subject>Rubidium</subject><subject>Sciences of the Universe</subject><subject>Silicates</subject><subject>Solid solutions</subject><subject>Thermodynamic models</subject><subject>Trace elements</subject><subject>Xenoliths</subject><subject>Zircon</subject><subject>Zirconium</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks1u1DAQxyMEEkvhAbhZ4kIlUuwkduLjUtEu0kpUgp6tiXeSdcnawfZWLKe-A4_BW_EkOA3iQ1pkyfaMf_-xxzNZ9pzRM0Zp_TpQWjGaU1bnrKxlXj3IFqwqi5xKUT_MFpSm01pK-Th7EsINTXYj-SL7folOb3FnQvSHV2RnLHoYXJ_2YDfkq_HaWXL94-7bVZumVUdMcNGNGIixZJzgfRK5fSDLPB5GJL0HayKSL2jdYOL2HrwajNNocYozYLrs3iItBBhiIK4j1vm4RZ9QsNZZA5a8gZCkLz8M7hY-GTh9mj3qYAj47Nd6kl1fvP14vsrX7y_fnS_XOVR1E3MODNqGC2yx6ARtNxUrOG8LLrEUrAJe6lIWVVO1QLXGggqtN63oUNQN8LYrT7LTOe4WBjV6swN_UA6MWi3XavJRxnnTSHnLEvtiZkfvPu8xRHXj9t6m5ykmmZCciYb_oXoYUBnbuehBp0_XaskpK6UQgiYqP0L1OJfEYmeS-x_-7AifxibVUx8VsFmgvQvBY_c7O0bV1EZqbqOUYK2mNlJV0hSzJiTW9uj_SvC_op-sw83k</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Huraiová, Monika</creator><creator>Paquette, Jean-Louis</creator><creator>Konečný, Patrik</creator><creator>Gannoun, Abdel-Mouhcine</creator><creator>Hurai, Vratislav</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7605-7519</orcidid><orcidid>https://orcid.org/0000-0003-4059-730X</orcidid></search><sort><creationdate>20170801</creationdate><title>Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)</title><author>Huraiová, Monika ; Paquette, Jean-Louis ; Konečný, Patrik ; Gannoun, Abdel-Mouhcine ; Hurai, Vratislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-5a1ab856ebe2f60bd41255b259e3614a53c392484ba0cce206ccdb6fe678a5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkali basalts</topic><topic>Basalt</topic><topic>Chronology</topic><topic>Continental margins</topic><topic>Crystallization</topic><topic>Diagnostic systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Feldspars</topic><topic>Geochemistry</topic><topic>Geochronometry</topic><topic>Geological time</topic><topic>Geology</topic><topic>Granite</topic><topic>Hydrothermal alteration</topic><topic>Igneous rocks</topic><topic>Ilmenite</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Magma</topic><topic>Magnetite</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Niobium</topic><topic>Original Paper</topic><topic>Orogeny</topic><topic>Petrology</topic><topic>Plagioclase</topic><topic>Pleistocene</topic><topic>Pliocene</topic><topic>Radiometric dating</topic><topic>Rifting</topic><topic>Rubidium</topic><topic>Sciences of the Universe</topic><topic>Silicates</topic><topic>Solid solutions</topic><topic>Thermodynamic models</topic><topic>Trace elements</topic><topic>Xenoliths</topic><topic>Zircon</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huraiová, Monika</creatorcontrib><creatorcontrib>Paquette, Jean-Louis</creatorcontrib><creatorcontrib>Konečný, Patrik</creatorcontrib><creatorcontrib>Gannoun, Abdel-Mouhcine</creatorcontrib><creatorcontrib>Hurai, Vratislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huraiová, Monika</au><au>Paquette, Jean-Louis</au><au>Konečný, Patrik</au><au>Gannoun, Abdel-Mouhcine</au><au>Hurai, Vratislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>172</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>59</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A
1
-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A
1
-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A
2
-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-017-1379-4</doi><orcidid>https://orcid.org/0000-0002-7605-7519</orcidid><orcidid>https://orcid.org/0000-0003-4059-730X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2017-08, Vol.172 (8), p.1, Article 59 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01558899v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alkali basalts Basalt Chronology Continental margins Crystallization Diagnostic systems Earth and Environmental Science Earth Sciences Feldspars Geochemistry Geochronometry Geological time Geology Granite Hydrothermal alteration Igneous rocks Ilmenite Isotopes Lava Magma Magnetite Mineral Resources Mineralogy Minerals Niobium Original Paper Orogeny Petrology Plagioclase Pleistocene Pliocene Radiometric dating Rifting Rubidium Sciences of the Universe Silicates Solid solutions Thermodynamic models Trace elements Xenoliths Zircon Zirconium |
title | Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geochemistry,%20mineralogy,%20and%20zircon%20U%E2%80%93Pb%E2%80%93Hf%20isotopes%20in%20peraluminous%20A-type%20granite%20xenoliths%20in%20Pliocene%E2%80%93Pleistocene%20basalts%20of%20northern%20Pannonian%20Basin%20(Slovakia)&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Huraiov%C3%A1,%20Monika&rft.date=2017-08-01&rft.volume=172&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=59&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-017-1379-4&rft_dat=%3Cgale_hal_p%3EA501396660%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916951685&rft_id=info:pmid/&rft_galeid=A501396660&rfr_iscdi=true |