How to cut a cake with a Gram matrix

In this article we study a problem of fair division. In particular we study a notion introduced by J. Barbanel that generalizes super envy-free fair division. We call this notion hyper envy-free. We give a new proof for the existence of such fair divisions. Our approach relies on classical linear al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-01, Vol.560, p.114-132
Hauptverfasser: Chèze, Guillaume, Amodei, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 114
container_title Linear algebra and its applications
container_volume 560
creator Chèze, Guillaume
Amodei, Luca
description In this article we study a problem of fair division. In particular we study a notion introduced by J. Barbanel that generalizes super envy-free fair division. We call this notion hyper envy-free. We give a new proof for the existence of such fair divisions. Our approach relies on classical linear algebra tools and allows us to give an explicit bound for this kind of fair division. Furthermore, we also give a theoretical answer to an open problem posed by Barbanel in 1996. Roughly speaking, this question is: how can we decide if there exists a fair division satisfying some inequality constraints? Furthermore, when all the measures are given with piecewise constant density functions then we show how to construct effectively such a fair division.
doi_str_mv 10.1016/j.laa.2018.09.028
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01557946v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518304695</els_id><sourcerecordid>2154711446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-958c92c10b19affae4ad3ee2133e55fa833cfc112cbc51a921bbe57a46ab6bbe3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLeAXjwkzuyfJIunItoKBS96XibbDd3YNnWTtvrt3RLx6Gkew-89Zh5j1wgZAub3TbYiyjhgmYHOgJcnbIRlIVIsVX7KRgBcpqLQ6pxddF0DALIAPmK3s_aQ9G1id31CiaUPlxx8v4x6GmidrKkP_uuSndW06tzV7xyz9-ent8dZOn-dvjxO5qkVSvapVqXV3CJUqKmuyUlaCOc4CuGUqqkUwtYWkdvKKiTNsaqcKkjmVOVRijG7G3KXtDLb4NcUvk1L3swmc3PcASpVaJnvMbI3A7sN7efOdb1p2l3YxPMMRyULRCnzSOFA2dB2XXD1XyyCORZnGhOLM8fiDGgTi4ueh8Hj4qt774LprHcb6xY-ONubRev_cf8Az9py9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154711446</pqid></control><display><type>article</type><title>How to cut a cake with a Gram matrix</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chèze, Guillaume ; Amodei, Luca</creator><creatorcontrib>Chèze, Guillaume ; Amodei, Luca</creatorcontrib><description>In this article we study a problem of fair division. In particular we study a notion introduced by J. Barbanel that generalizes super envy-free fair division. We call this notion hyper envy-free. We give a new proof for the existence of such fair divisions. Our approach relies on classical linear algebra tools and allows us to give an explicit bound for this kind of fair division. Furthermore, we also give a theoretical answer to an open problem posed by Barbanel in 1996. Roughly speaking, this question is: how can we decide if there exists a fair division satisfying some inequality constraints? Furthermore, when all the measures are given with piecewise constant density functions then we show how to construct effectively such a fair division.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.09.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Cake cutting algorithm ; Computer Science ; Fair division ; Gram matrix ; Linear algebra ; Mathematical problems ; Matrix ; Multiagent Systems ; Proof theory</subject><ispartof>Linear algebra and its applications, 2019-01, Vol.560, p.114-132</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-958c92c10b19affae4ad3ee2133e55fa833cfc112cbc51a921bbe57a46ab6bbe3</cites><orcidid>0000-0001-9657-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.09.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01557946$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chèze, Guillaume</creatorcontrib><creatorcontrib>Amodei, Luca</creatorcontrib><title>How to cut a cake with a Gram matrix</title><title>Linear algebra and its applications</title><description>In this article we study a problem of fair division. In particular we study a notion introduced by J. Barbanel that generalizes super envy-free fair division. We call this notion hyper envy-free. We give a new proof for the existence of such fair divisions. Our approach relies on classical linear algebra tools and allows us to give an explicit bound for this kind of fair division. Furthermore, we also give a theoretical answer to an open problem posed by Barbanel in 1996. Roughly speaking, this question is: how can we decide if there exists a fair division satisfying some inequality constraints? Furthermore, when all the measures are given with piecewise constant density functions then we show how to construct effectively such a fair division.</description><subject>Algorithms</subject><subject>Cake cutting algorithm</subject><subject>Computer Science</subject><subject>Fair division</subject><subject>Gram matrix</subject><subject>Linear algebra</subject><subject>Mathematical problems</subject><subject>Matrix</subject><subject>Multiagent Systems</subject><subject>Proof theory</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFY_gLeAXjwkzuyfJIunItoKBS96XibbDd3YNnWTtvrt3RLx6Gkew-89Zh5j1wgZAub3TbYiyjhgmYHOgJcnbIRlIVIsVX7KRgBcpqLQ6pxddF0DALIAPmK3s_aQ9G1id31CiaUPlxx8v4x6GmidrKkP_uuSndW06tzV7xyz9-ent8dZOn-dvjxO5qkVSvapVqXV3CJUqKmuyUlaCOc4CuGUqqkUwtYWkdvKKiTNsaqcKkjmVOVRijG7G3KXtDLb4NcUvk1L3swmc3PcASpVaJnvMbI3A7sN7efOdb1p2l3YxPMMRyULRCnzSOFA2dB2XXD1XyyCORZnGhOLM8fiDGgTi4ueh8Hj4qt774LprHcb6xY-ONubRev_cf8Az9py9w</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Chèze, Guillaume</creator><creator>Amodei, Luca</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9657-4209</orcidid></search><sort><creationdate>20190101</creationdate><title>How to cut a cake with a Gram matrix</title><author>Chèze, Guillaume ; Amodei, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-958c92c10b19affae4ad3ee2133e55fa833cfc112cbc51a921bbe57a46ab6bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cake cutting algorithm</topic><topic>Computer Science</topic><topic>Fair division</topic><topic>Gram matrix</topic><topic>Linear algebra</topic><topic>Mathematical problems</topic><topic>Matrix</topic><topic>Multiagent Systems</topic><topic>Proof theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chèze, Guillaume</creatorcontrib><creatorcontrib>Amodei, Luca</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chèze, Guillaume</au><au>Amodei, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to cut a cake with a Gram matrix</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>560</volume><spage>114</spage><epage>132</epage><pages>114-132</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this article we study a problem of fair division. In particular we study a notion introduced by J. Barbanel that generalizes super envy-free fair division. We call this notion hyper envy-free. We give a new proof for the existence of such fair divisions. Our approach relies on classical linear algebra tools and allows us to give an explicit bound for this kind of fair division. Furthermore, we also give a theoretical answer to an open problem posed by Barbanel in 1996. Roughly speaking, this question is: how can we decide if there exists a fair division satisfying some inequality constraints? Furthermore, when all the measures are given with piecewise constant density functions then we show how to construct effectively such a fair division.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.09.028</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9657-4209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-01, Vol.560, p.114-132
issn 0024-3795
1873-1856
language eng
recordid cdi_hal_primary_oai_HAL_hal_01557946v1
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cake cutting algorithm
Computer Science
Fair division
Gram matrix
Linear algebra
Mathematical problems
Matrix
Multiagent Systems
Proof theory
title How to cut a cake with a Gram matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20cut%20a%20cake%20with%20a%20Gram%20matrix&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Ch%C3%A8ze,%20Guillaume&rft.date=2019-01-01&rft.volume=560&rft.spage=114&rft.epage=132&rft.pages=114-132&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.09.028&rft_dat=%3Cproquest_hal_p%3E2154711446%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154711446&rft_id=info:pmid/&rft_els_id=S0024379518304695&rfr_iscdi=true