Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola
The fungal pathogen Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for severe losses worldwide in the mushroom (Agaricus bisporus) industry. Infected crops are characterised by masses of undifferentiated tissue (bubbles) growing in place of sporophores. The expression of th...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2010-02, Vol.85 (5), p.1499-1507 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1507 |
---|---|
container_issue | 5 |
container_start_page | 1499 |
container_title | Applied microbiology and biotechnology |
container_volume | 85 |
creator | Largeteau, Michèle L Latapy, Camille Minvielle, Nathalie Regnault-Roger, Catherine Savoie, Jean-Michel |
description | The fungal pathogen Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for severe losses worldwide in the mushroom (Agaricus bisporus) industry. Infected crops are characterised by masses of undifferentiated tissue (bubbles) growing in place of sporophores. The expression of three laccase genes (lcc1, lcc2 and lcc3), two tyrosinase genes (AbPPO1 and AbPPO2) and the hspA gene encoding a heat-shock protein known to be potentially associated with host-pathogen interaction was investigated in mycelial aggregates and during the development of healthy sporophores and bubbles of a susceptible cultivar. The lcc3, AbPPO2 and hspA genes were each expressed at different levels at the different stages of sporophore morphogenesis, whilst they showed a stable expression throughout bubble development. The transcript levels were similar in bubbles and at the first developmental stage of healthy fruiting bodies, both showing no tissue differentiation. These observations suggest that lcc3, AbPPO2 and hspA are associated with A. bisporus morphogenesis. Comparing the expression of the hspA gene in three susceptible and three tolerant strains showed that the latter displayed a higher level of transcript in the primordium, which is the stage receptive to the pathogen. The six strains exhibited a comparable expression in the vegetative mycelium, non-receptive to L. fungicola. |
doi_str_mv | 10.1007/s00253-009-2186-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01557871v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733862109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-d67da50e4e6dab410e7f8844c829531c72ee8fe6d16d8f9eae8ddbcc6937a03c3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEomXhAbiA1QtCIuCxEzs5rqpCkVbiAD1bjj3ZuGTtYCdV92V4VhKyohIHOHlkf_8_Hs2fZS-BvgdK5YdEKSt5TmmdM6hEzh5l51BwllMBxePsnIIsc1nW1Vn2LKVbSoFVQjzNzqCWAFTCefbz6n6ImJILnoSWDB360JNw76xOSLS3pEM95qkL5jvZo8dE7BSd35OxQ2LxDvswHNCPi3q719GZKZHGpSHEuWjj5MaFboJ1mN4tbv3YHX87O9-iGdGS5kh2aLR3xvW9mw6knfzemdDr59mTVvcJX5zOTXbz8erb5XW--_Lp8-V2l5tC0DG3QlpdUixQWN0UQFG2VVUUpmJ1ycFIhli18yMIW7U1aqysbYwRNZeacsM32dvVt9O9GqI76HhUQTt1vd2p5Y5CWcpKwh3M7JuVHWL4MWEa1cElg32vPYYpKVmUNZ93Uvyf5LwSDGg9kxd_kbdhin4eWTFWC6BsZjcZrJCJIaWI7Z-fAlVLINQaCDU3V0sgFJs1r07GU3NA-6A4JWAG2AqkYVkrxofO_3J9vYpaHZTeR5fUzVdGgc-JqwsBwH8BAUTL2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229610273</pqid></control><display><type>article</type><title>Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Largeteau, Michèle L ; Latapy, Camille ; Minvielle, Nathalie ; Regnault-Roger, Catherine ; Savoie, Jean-Michel</creator><creatorcontrib>Largeteau, Michèle L ; Latapy, Camille ; Minvielle, Nathalie ; Regnault-Roger, Catherine ; Savoie, Jean-Michel</creatorcontrib><description>The fungal pathogen Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for severe losses worldwide in the mushroom (Agaricus bisporus) industry. Infected crops are characterised by masses of undifferentiated tissue (bubbles) growing in place of sporophores. The expression of three laccase genes (lcc1, lcc2 and lcc3), two tyrosinase genes (AbPPO1 and AbPPO2) and the hspA gene encoding a heat-shock protein known to be potentially associated with host-pathogen interaction was investigated in mycelial aggregates and during the development of healthy sporophores and bubbles of a susceptible cultivar. The lcc3, AbPPO2 and hspA genes were each expressed at different levels at the different stages of sporophore morphogenesis, whilst they showed a stable expression throughout bubble development. The transcript levels were similar in bubbles and at the first developmental stage of healthy fruiting bodies, both showing no tissue differentiation. These observations suggest that lcc3, AbPPO2 and hspA are associated with A. bisporus morphogenesis. Comparing the expression of the hspA gene in three susceptible and three tolerant strains showed that the latter displayed a higher level of transcript in the primordium, which is the stage receptive to the pathogen. The six strains exhibited a comparable expression in the vegetative mycelium, non-receptive to L. fungicola.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-009-2186-2</identifier><identifier>PMID: 19711071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agaricus - enzymology ; Agaricus - genetics ; Agaricus - growth & development ; Agaricus - metabolism ; Agaricus bisporus ; Applied Genetics and Molecular Biotechnology ; Biomedical and Life Sciences ; Biotechnology ; Bubbles ; Chemical synthesis ; Cultivars ; Developmental stages ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; Fruiting Bodies, Fungal - genetics ; Fruiting Bodies, Fungal - growth & development ; Fruiting Bodies, Fungal - metabolism ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Regulation, Fungal ; Genomes ; Heat shock proteins ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Host-Pathogen Interactions ; Hypocreales - growth & development ; Hypocreales - pathogenicity ; Infections ; Laccase - genetics ; Laccase - metabolism ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Monophenol Monooxygenase - genetics ; Monophenol Monooxygenase - metabolism ; Morphogenesis ; Mushrooms ; Mycelium - genetics ; Mycelium - growth & development ; Mycelium - metabolism ; Nitrogen ; Pathogens ; Phenols ; Polymerase Chain Reaction ; Studies ; Vegetal Biology ; Verticillium - growth & development ; Verticillium - pathogenicity ; Verticillium fungicola</subject><ispartof>Applied microbiology and biotechnology, 2010-02, Vol.85 (5), p.1499-1507</ispartof><rights>Springer-Verlag 2009</rights><rights>Springer-Verlag 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-d67da50e4e6dab410e7f8844c829531c72ee8fe6d16d8f9eae8ddbcc6937a03c3</citedby><cites>FETCH-LOGICAL-c460t-d67da50e4e6dab410e7f8844c829531c72ee8fe6d16d8f9eae8ddbcc6937a03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-009-2186-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-009-2186-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19711071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01557871$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Largeteau, Michèle L</creatorcontrib><creatorcontrib>Latapy, Camille</creatorcontrib><creatorcontrib>Minvielle, Nathalie</creatorcontrib><creatorcontrib>Regnault-Roger, Catherine</creatorcontrib><creatorcontrib>Savoie, Jean-Michel</creatorcontrib><title>Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The fungal pathogen Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for severe losses worldwide in the mushroom (Agaricus bisporus) industry. Infected crops are characterised by masses of undifferentiated tissue (bubbles) growing in place of sporophores. The expression of three laccase genes (lcc1, lcc2 and lcc3), two tyrosinase genes (AbPPO1 and AbPPO2) and the hspA gene encoding a heat-shock protein known to be potentially associated with host-pathogen interaction was investigated in mycelial aggregates and during the development of healthy sporophores and bubbles of a susceptible cultivar. The lcc3, AbPPO2 and hspA genes were each expressed at different levels at the different stages of sporophore morphogenesis, whilst they showed a stable expression throughout bubble development. The transcript levels were similar in bubbles and at the first developmental stage of healthy fruiting bodies, both showing no tissue differentiation. These observations suggest that lcc3, AbPPO2 and hspA are associated with A. bisporus morphogenesis. Comparing the expression of the hspA gene in three susceptible and three tolerant strains showed that the latter displayed a higher level of transcript in the primordium, which is the stage receptive to the pathogen. The six strains exhibited a comparable expression in the vegetative mycelium, non-receptive to L. fungicola.</description><subject>Agaricus - enzymology</subject><subject>Agaricus - genetics</subject><subject>Agaricus - growth & development</subject><subject>Agaricus - metabolism</subject><subject>Agaricus bisporus</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bubbles</subject><subject>Chemical synthesis</subject><subject>Cultivars</subject><subject>Developmental stages</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>Fruiting Bodies, Fungal - genetics</subject><subject>Fruiting Bodies, Fungal - growth & development</subject><subject>Fruiting Bodies, Fungal - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genomes</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Host-Pathogen Interactions</subject><subject>Hypocreales - growth & development</subject><subject>Hypocreales - pathogenicity</subject><subject>Infections</subject><subject>Laccase - genetics</subject><subject>Laccase - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monophenol Monooxygenase - genetics</subject><subject>Monophenol Monooxygenase - metabolism</subject><subject>Morphogenesis</subject><subject>Mushrooms</subject><subject>Mycelium - genetics</subject><subject>Mycelium - growth & development</subject><subject>Mycelium - metabolism</subject><subject>Nitrogen</subject><subject>Pathogens</subject><subject>Phenols</subject><subject>Polymerase Chain Reaction</subject><subject>Studies</subject><subject>Vegetal Biology</subject><subject>Verticillium - growth & development</subject><subject>Verticillium - pathogenicity</subject><subject>Verticillium fungicola</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFksFu1DAQhiMEomXhAbiA1QtCIuCxEzs5rqpCkVbiAD1bjj3ZuGTtYCdV92V4VhKyohIHOHlkf_8_Hs2fZS-BvgdK5YdEKSt5TmmdM6hEzh5l51BwllMBxePsnIIsc1nW1Vn2LKVbSoFVQjzNzqCWAFTCefbz6n6ImJILnoSWDB360JNw76xOSLS3pEM95qkL5jvZo8dE7BSd35OxQ2LxDvswHNCPi3q719GZKZHGpSHEuWjj5MaFboJ1mN4tbv3YHX87O9-iGdGS5kh2aLR3xvW9mw6knfzemdDr59mTVvcJX5zOTXbz8erb5XW--_Lp8-V2l5tC0DG3QlpdUixQWN0UQFG2VVUUpmJ1ycFIhli18yMIW7U1aqysbYwRNZeacsM32dvVt9O9GqI76HhUQTt1vd2p5Y5CWcpKwh3M7JuVHWL4MWEa1cElg32vPYYpKVmUNZ93Uvyf5LwSDGg9kxd_kbdhin4eWTFWC6BsZjcZrJCJIaWI7Z-fAlVLINQaCDU3V0sgFJs1r07GU3NA-6A4JWAG2AqkYVkrxofO_3J9vYpaHZTeR5fUzVdGgc-JqwsBwH8BAUTL2g</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Largeteau, Michèle L</creator><creator>Latapy, Camille</creator><creator>Minvielle, Nathalie</creator><creator>Regnault-Roger, Catherine</creator><creator>Savoie, Jean-Michel</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope></search><sort><creationdate>20100201</creationdate><title>Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola</title><author>Largeteau, Michèle L ; Latapy, Camille ; Minvielle, Nathalie ; Regnault-Roger, Catherine ; Savoie, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-d67da50e4e6dab410e7f8844c829531c72ee8fe6d16d8f9eae8ddbcc6937a03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agaricus - enzymology</topic><topic>Agaricus - genetics</topic><topic>Agaricus - growth & development</topic><topic>Agaricus - metabolism</topic><topic>Agaricus bisporus</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bubbles</topic><topic>Chemical synthesis</topic><topic>Cultivars</topic><topic>Developmental stages</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>Fruiting Bodies, Fungal - genetics</topic><topic>Fruiting Bodies, Fungal - growth & development</topic><topic>Fruiting Bodies, Fungal - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genomes</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Host-Pathogen Interactions</topic><topic>Hypocreales - growth & development</topic><topic>Hypocreales - pathogenicity</topic><topic>Infections</topic><topic>Laccase - genetics</topic><topic>Laccase - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monophenol Monooxygenase - genetics</topic><topic>Monophenol Monooxygenase - metabolism</topic><topic>Morphogenesis</topic><topic>Mushrooms</topic><topic>Mycelium - genetics</topic><topic>Mycelium - growth & development</topic><topic>Mycelium - metabolism</topic><topic>Nitrogen</topic><topic>Pathogens</topic><topic>Phenols</topic><topic>Polymerase Chain Reaction</topic><topic>Studies</topic><topic>Vegetal Biology</topic><topic>Verticillium - growth & development</topic><topic>Verticillium - pathogenicity</topic><topic>Verticillium fungicola</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Largeteau, Michèle L</creatorcontrib><creatorcontrib>Latapy, Camille</creatorcontrib><creatorcontrib>Minvielle, Nathalie</creatorcontrib><creatorcontrib>Regnault-Roger, Catherine</creatorcontrib><creatorcontrib>Savoie, Jean-Michel</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Largeteau, Michèle L</au><au>Latapy, Camille</au><au>Minvielle, Nathalie</au><au>Regnault-Roger, Catherine</au><au>Savoie, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>85</volume><issue>5</issue><spage>1499</spage><epage>1507</epage><pages>1499-1507</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The fungal pathogen Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for severe losses worldwide in the mushroom (Agaricus bisporus) industry. Infected crops are characterised by masses of undifferentiated tissue (bubbles) growing in place of sporophores. The expression of three laccase genes (lcc1, lcc2 and lcc3), two tyrosinase genes (AbPPO1 and AbPPO2) and the hspA gene encoding a heat-shock protein known to be potentially associated with host-pathogen interaction was investigated in mycelial aggregates and during the development of healthy sporophores and bubbles of a susceptible cultivar. The lcc3, AbPPO2 and hspA genes were each expressed at different levels at the different stages of sporophore morphogenesis, whilst they showed a stable expression throughout bubble development. The transcript levels were similar in bubbles and at the first developmental stage of healthy fruiting bodies, both showing no tissue differentiation. These observations suggest that lcc3, AbPPO2 and hspA are associated with A. bisporus morphogenesis. Comparing the expression of the hspA gene in three susceptible and three tolerant strains showed that the latter displayed a higher level of transcript in the primordium, which is the stage receptive to the pathogen. The six strains exhibited a comparable expression in the vegetative mycelium, non-receptive to L. fungicola.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19711071</pmid><doi>10.1007/s00253-009-2186-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2010-02, Vol.85 (5), p.1499-1507 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01557871v1 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Agaricus - enzymology Agaricus - genetics Agaricus - growth & development Agaricus - metabolism Agaricus bisporus Applied Genetics and Molecular Biotechnology Biomedical and Life Sciences Biotechnology Bubbles Chemical synthesis Cultivars Developmental stages DNA, Fungal - genetics DNA, Fungal - metabolism Fruiting Bodies, Fungal - genetics Fruiting Bodies, Fungal - growth & development Fruiting Bodies, Fungal - metabolism Fungal Proteins - genetics Fungal Proteins - metabolism Gene expression Gene Expression Regulation, Fungal Genomes Heat shock proteins Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Host-Pathogen Interactions Hypocreales - growth & development Hypocreales - pathogenicity Infections Laccase - genetics Laccase - metabolism Life Sciences Microbial Genetics and Genomics Microbiology Monophenol Monooxygenase - genetics Monophenol Monooxygenase - metabolism Morphogenesis Mushrooms Mycelium - genetics Mycelium - growth & development Mycelium - metabolism Nitrogen Pathogens Phenols Polymerase Chain Reaction Studies Vegetal Biology Verticillium - growth & development Verticillium - pathogenicity Verticillium fungicola |
title | Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20phenol%20oxidase%20and%20heat-shock%20genes%20during%20the%20development%20of%20Agaricus%20bisporus%20fruiting%20bodies,%20healthy%20and%20infected%20by%20Lecanicillium%20fungicola&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Largeteau,%20Mich%C3%A8le%20L&rft.date=2010-02-01&rft.volume=85&rft.issue=5&rft.spage=1499&rft.epage=1507&rft.pages=1499-1507&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-009-2186-2&rft_dat=%3Cproquest_hal_p%3E733862109%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229610273&rft_id=info:pmid/19711071&rfr_iscdi=true |