An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud

We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on imaging sciences 2018-01, Vol.11 (2), p.1363-1389
Hauptverfasser: Mérigot, Quentin, Meyron, Jocelyn, Thibert, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 2
container_start_page 1363
container_title SIAM journal on imaging sciences
container_volume 11
creator Mérigot, Quentin
Meyron, Jocelyn
Thibert, Boris
description We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61–76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh.
doi_str_mv 10.1137/17M1137486
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01556544v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01556544v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-4b0aa61ce7bf8e7f6f37eae4b5dabdbd17001de7067a3bc9e1b4be3dd536be423</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKLgunrxCXJVqOYzadIeS1FXXFlh13NJmq9upW1K0vXn7W1ZUU8zDDPDMIScA7sC4Ooa1NOEIpEHZAYpl5FIY3H4jx-TkxDeGJNMJGpGHrOOZs2r8_WwbWnlPF31Q93qhm687kLv_EANDh-IHdV0Xbd9g5907XY91Z0dpWdXdwPNG7ezp-So0k3Asx-ck5e7202-iJar-4c8W0YlZzBEwjCtJZSoTJWgqmTFFWoUJrbaWGNBMQYWFZNKc1OmCEYY5NbGXBoUN3xOLva9W90UvR_X-q_C6bpYZMti0hjEsYyFeIfRe7n3lt6F4LH6DQArpquKv8v4N7dUXd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud</title><source>SIAM Journals Online</source><source>Alma/SFX Local Collection</source><creator>Mérigot, Quentin ; Meyron, Jocelyn ; Thibert, Boris</creator><creatorcontrib>Mérigot, Quentin ; Meyron, Jocelyn ; Thibert, Boris</creatorcontrib><description>We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61–76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh.</description><identifier>ISSN: 1936-4954</identifier><identifier>EISSN: 1936-4954</identifier><identifier>DOI: 10.1137/17M1137486</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Computational Geometry ; Computer Science ; Mathematics ; Numerical Analysis</subject><ispartof>SIAM journal on imaging sciences, 2018-01, Vol.11 (2), p.1363-1389</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-4b0aa61ce7bf8e7f6f37eae4b5dabdbd17001de7067a3bc9e1b4be3dd536be423</citedby><cites>FETCH-LOGICAL-c301t-4b0aa61ce7bf8e7f6f37eae4b5dabdbd17001de7067a3bc9e1b4be3dd536be423</cites><orcidid>0000-0003-2704-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01556544$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mérigot, Quentin</creatorcontrib><creatorcontrib>Meyron, Jocelyn</creatorcontrib><creatorcontrib>Thibert, Boris</creatorcontrib><title>An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud</title><title>SIAM journal on imaging sciences</title><description>We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61–76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh.</description><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>1936-4954</issn><issn>1936-4954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNUM1KxDAYDKLgunrxCXJVqOYzadIeS1FXXFlh13NJmq9upW1K0vXn7W1ZUU8zDDPDMIScA7sC4Ooa1NOEIpEHZAYpl5FIY3H4jx-TkxDeGJNMJGpGHrOOZs2r8_WwbWnlPF31Q93qhm687kLv_EANDh-IHdV0Xbd9g5907XY91Z0dpWdXdwPNG7ezp-So0k3Asx-ck5e7202-iJar-4c8W0YlZzBEwjCtJZSoTJWgqmTFFWoUJrbaWGNBMQYWFZNKc1OmCEYY5NbGXBoUN3xOLva9W90UvR_X-q_C6bpYZMti0hjEsYyFeIfRe7n3lt6F4LH6DQArpquKv8v4N7dUXd0</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Mérigot, Quentin</creator><creator>Meyron, Jocelyn</creator><creator>Thibert, Boris</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2704-7848</orcidid></search><sort><creationdate>201801</creationdate><title>An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud</title><author>Mérigot, Quentin ; Meyron, Jocelyn ; Thibert, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-4b0aa61ce7bf8e7f6f37eae4b5dabdbd17001de7067a3bc9e1b4be3dd536be423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mérigot, Quentin</creatorcontrib><creatorcontrib>Meyron, Jocelyn</creatorcontrib><creatorcontrib>Thibert, Boris</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on imaging sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mérigot, Quentin</au><au>Meyron, Jocelyn</au><au>Thibert, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud</atitle><jtitle>SIAM journal on imaging sciences</jtitle><date>2018-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>1363</spage><epage>1389</epage><pages>1363-1389</pages><issn>1936-4954</issn><eissn>1936-4954</eissn><abstract>We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61–76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/17M1137486</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-2704-7848</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-4954
ispartof SIAM journal on imaging sciences, 2018-01, Vol.11 (2), p.1363-1389
issn 1936-4954
1936-4954
language eng
recordid cdi_hal_primary_oai_HAL_hal_01556544v1
source SIAM Journals Online; Alma/SFX Local Collection
subjects Computational Geometry
Computer Science
Mathematics
Numerical Analysis
title An Algorithm for Optimal Transport between a Simplex Soup and a Point Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm%20for%20Optimal%20Transport%20between%20a%20Simplex%20Soup%20and%20a%20Point%20Cloud&rft.jtitle=SIAM%20journal%20on%20imaging%20sciences&rft.au=M%C3%A9rigot,%20Quentin&rft.date=2018-01&rft.volume=11&rft.issue=2&rft.spage=1363&rft.epage=1389&rft.pages=1363-1389&rft.issn=1936-4954&rft.eissn=1936-4954&rft_id=info:doi/10.1137/17M1137486&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01556544v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true