Formation of self-organized shear structures in thin current sheets

Self‐consistent kinetic (particle‐in‐cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self‐consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self‐consistent evolution of some initial magnetic perturbat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2015-06, Vol.120 (6), p.4802-4824
Hauptverfasser: Malova, H. V., Mingalev, O. V., Grigorenko, E. E., Mingalev, I. V., Melnik, M. N., Popov, V. Yu, Delcourt, D. C., Petrukovich, A. A., Shen, C., Rong, Z. J., Zelenyi, L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4824
container_issue 6
container_start_page 4802
container_title Journal of geophysical research. Space physics
container_volume 120
creator Malova, H. V.
Mingalev, O. V.
Grigorenko, E. E.
Mingalev, I. V.
Melnik, M. N.
Popov, V. Yu
Delcourt, D. C.
Petrukovich, A. A.
Shen, C.
Rong, Z. J.
Zelenyi, L. M.
description Self‐consistent kinetic (particle‐in‐cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self‐consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self‐consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field‐aligned currents in the center of the current sheet, as a result of north‐south asymmetry of quasi‐adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component. Key Points Thin current sheet model with shear magnetic component is developed Magnetic shear can be formed self‐consistently in current sheets Ion dynamics asymmetry in current sheets is the reason of shear appearance
doi_str_mv 10.1002/2014JA020974
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01551999v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718939306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6518-b53863ef4113c47dc4da230ab27da868e74b1bbe7cb029eb633f310d8913794f3</originalsourceid><addsrcrecordid>eNqN0c1u1DAQAOAIgUTV9sYDROICEqEzHsc_x2Vht5RVkRCUo-UkDpuSjYudQMvT41VKhXqo8MG2Rt-MNDNZ9gzhNQKwEwbIzxbAQEv-KDtgKHShObDHf_-k4Gl2HOMlpKNSCMuDbLnyYWfHzg-5b_Po-rbw4Zsdut-uyePW2ZDHMUz1OAUX827Ix2266ikEN4x74MZ4lD1pbR_d8e17mH1Zvfu8PC02H9fvl4tNUYsSVVGVpAS5liNSzWVT88YyAlsx2VgllJO8wqpysq6AaVcJopYQGqWRpOYtHWYv57pb25ur0O1suDHeduZ0sTH7GGBZotb6Jyb7YrZXwf-YXBzNrou163s7OD9FgxKVJk0g_oOmyaaqjBJ9fo9e-ikMqWnDWElEfF_zAZWmLjRDDSypV7Oqg48xuPauJQSz36j5d6OJ08x_db27edCas_WnRZq4UCmrmLO6OLrruywbvhshSZbm6_naSPjw5mL1tjQX9Aeeiayr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696921902</pqid></control><display><type>article</type><title>Formation of self-organized shear structures in thin current sheets</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Malova, H. V. ; Mingalev, O. V. ; Grigorenko, E. E. ; Mingalev, I. V. ; Melnik, M. N. ; Popov, V. Yu ; Delcourt, D. C. ; Petrukovich, A. A. ; Shen, C. ; Rong, Z. J. ; Zelenyi, L. M.</creator><creatorcontrib>Malova, H. V. ; Mingalev, O. V. ; Grigorenko, E. E. ; Mingalev, I. V. ; Melnik, M. N. ; Popov, V. Yu ; Delcourt, D. C. ; Petrukovich, A. A. ; Shen, C. ; Rong, Z. J. ; Zelenyi, L. M.</creatorcontrib><description>Self‐consistent kinetic (particle‐in‐cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self‐consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self‐consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field‐aligned currents in the center of the current sheet, as a result of north‐south asymmetry of quasi‐adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component. Key Points Thin current sheet model with shear magnetic component is developed Magnetic shear can be formed self‐consistently in current sheets Ion dynamics asymmetry in current sheets is the reason of shear appearance</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA020974</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; Asymmetry ; Configurations ; Current sheets ; Drift currents ; Evolution ; Formations ; Geophysics ; kinetic theory ; Magnetic fields ; magnetic shear ; magnetotail current sheet ; Magnetotails ; Mathematical models ; numerical modeling ; particle dynamics ; Perturbation ; Perturbation methods ; Physics ; Plasma Physics ; Shear ; Symmetry</subject><ispartof>Journal of geophysical research. Space physics, 2015-06, Vol.120 (6), p.4802-4824</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6518-b53863ef4113c47dc4da230ab27da868e74b1bbe7cb029eb633f310d8913794f3</citedby><cites>FETCH-LOGICAL-c6518-b53863ef4113c47dc4da230ab27da868e74b1bbe7cb029eb633f310d8913794f3</cites><orcidid>0000-0002-3103-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JA020974$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JA020974$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01551999$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malova, H. V.</creatorcontrib><creatorcontrib>Mingalev, O. V.</creatorcontrib><creatorcontrib>Grigorenko, E. E.</creatorcontrib><creatorcontrib>Mingalev, I. V.</creatorcontrib><creatorcontrib>Melnik, M. N.</creatorcontrib><creatorcontrib>Popov, V. Yu</creatorcontrib><creatorcontrib>Delcourt, D. C.</creatorcontrib><creatorcontrib>Petrukovich, A. A.</creatorcontrib><creatorcontrib>Shen, C.</creatorcontrib><creatorcontrib>Rong, Z. J.</creatorcontrib><creatorcontrib>Zelenyi, L. M.</creatorcontrib><title>Formation of self-organized shear structures in thin current sheets</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Self‐consistent kinetic (particle‐in‐cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self‐consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self‐consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field‐aligned currents in the center of the current sheet, as a result of north‐south asymmetry of quasi‐adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component. Key Points Thin current sheet model with shear magnetic component is developed Magnetic shear can be formed self‐consistently in current sheets Ion dynamics asymmetry in current sheets is the reason of shear appearance</description><subject>Astrophysics</subject><subject>Asymmetry</subject><subject>Configurations</subject><subject>Current sheets</subject><subject>Drift currents</subject><subject>Evolution</subject><subject>Formations</subject><subject>Geophysics</subject><subject>kinetic theory</subject><subject>Magnetic fields</subject><subject>magnetic shear</subject><subject>magnetotail current sheet</subject><subject>Magnetotails</subject><subject>Mathematical models</subject><subject>numerical modeling</subject><subject>particle dynamics</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Plasma Physics</subject><subject>Shear</subject><subject>Symmetry</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0c1u1DAQAOAIgUTV9sYDROICEqEzHsc_x2Vht5RVkRCUo-UkDpuSjYudQMvT41VKhXqo8MG2Rt-MNDNZ9gzhNQKwEwbIzxbAQEv-KDtgKHShObDHf_-k4Gl2HOMlpKNSCMuDbLnyYWfHzg-5b_Po-rbw4Zsdut-uyePW2ZDHMUz1OAUX827Ix2266ikEN4x74MZ4lD1pbR_d8e17mH1Zvfu8PC02H9fvl4tNUYsSVVGVpAS5liNSzWVT88YyAlsx2VgllJO8wqpysq6AaVcJopYQGqWRpOYtHWYv57pb25ur0O1suDHeduZ0sTH7GGBZotb6Jyb7YrZXwf-YXBzNrou163s7OD9FgxKVJk0g_oOmyaaqjBJ9fo9e-ikMqWnDWElEfF_zAZWmLjRDDSypV7Oqg48xuPauJQSz36j5d6OJ08x_db27edCas_WnRZq4UCmrmLO6OLrruywbvhshSZbm6_naSPjw5mL1tjQX9Aeeiayr</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Malova, H. V.</creator><creator>Mingalev, O. V.</creator><creator>Grigorenko, E. E.</creator><creator>Mingalev, I. V.</creator><creator>Melnik, M. N.</creator><creator>Popov, V. Yu</creator><creator>Delcourt, D. C.</creator><creator>Petrukovich, A. A.</creator><creator>Shen, C.</creator><creator>Rong, Z. J.</creator><creator>Zelenyi, L. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3103-8250</orcidid></search><sort><creationdate>201506</creationdate><title>Formation of self-organized shear structures in thin current sheets</title><author>Malova, H. V. ; Mingalev, O. V. ; Grigorenko, E. E. ; Mingalev, I. V. ; Melnik, M. N. ; Popov, V. Yu ; Delcourt, D. C. ; Petrukovich, A. A. ; Shen, C. ; Rong, Z. J. ; Zelenyi, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6518-b53863ef4113c47dc4da230ab27da868e74b1bbe7cb029eb633f310d8913794f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>Asymmetry</topic><topic>Configurations</topic><topic>Current sheets</topic><topic>Drift currents</topic><topic>Evolution</topic><topic>Formations</topic><topic>Geophysics</topic><topic>kinetic theory</topic><topic>Magnetic fields</topic><topic>magnetic shear</topic><topic>magnetotail current sheet</topic><topic>Magnetotails</topic><topic>Mathematical models</topic><topic>numerical modeling</topic><topic>particle dynamics</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Plasma Physics</topic><topic>Shear</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malova, H. V.</creatorcontrib><creatorcontrib>Mingalev, O. V.</creatorcontrib><creatorcontrib>Grigorenko, E. E.</creatorcontrib><creatorcontrib>Mingalev, I. V.</creatorcontrib><creatorcontrib>Melnik, M. N.</creatorcontrib><creatorcontrib>Popov, V. Yu</creatorcontrib><creatorcontrib>Delcourt, D. C.</creatorcontrib><creatorcontrib>Petrukovich, A. A.</creatorcontrib><creatorcontrib>Shen, C.</creatorcontrib><creatorcontrib>Rong, Z. J.</creatorcontrib><creatorcontrib>Zelenyi, L. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malova, H. V.</au><au>Mingalev, O. V.</au><au>Grigorenko, E. E.</au><au>Mingalev, I. V.</au><au>Melnik, M. N.</au><au>Popov, V. Yu</au><au>Delcourt, D. C.</au><au>Petrukovich, A. A.</au><au>Shen, C.</au><au>Rong, Z. J.</au><au>Zelenyi, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of self-organized shear structures in thin current sheets</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2015-06</date><risdate>2015</risdate><volume>120</volume><issue>6</issue><spage>4802</spage><epage>4824</epage><pages>4802-4824</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Self‐consistent kinetic (particle‐in‐cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self‐consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self‐consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field‐aligned currents in the center of the current sheet, as a result of north‐south asymmetry of quasi‐adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component. Key Points Thin current sheet model with shear magnetic component is developed Magnetic shear can be formed self‐consistently in current sheets Ion dynamics asymmetry in current sheets is the reason of shear appearance</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA020974</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3103-8250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2015-06, Vol.120 (6), p.4802-4824
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_hal_01551999v1
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Astrophysics
Asymmetry
Configurations
Current sheets
Drift currents
Evolution
Formations
Geophysics
kinetic theory
Magnetic fields
magnetic shear
magnetotail current sheet
Magnetotails
Mathematical models
numerical modeling
particle dynamics
Perturbation
Perturbation methods
Physics
Plasma Physics
Shear
Symmetry
title Formation of self-organized shear structures in thin current sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20self-organized%20shear%20structures%20in%20thin%20current%20sheets&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Malova,%20H.%20V.&rft.date=2015-06&rft.volume=120&rft.issue=6&rft.spage=4802&rft.epage=4824&rft.pages=4802-4824&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA020974&rft_dat=%3Cproquest_hal_p%3E1718939306%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696921902&rft_id=info:pmid/&rfr_iscdi=true