Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides

We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2017-01, Vol.2017 (1), p.198-211
Hauptverfasser: Georgelin, Thomas, Akouche, Mariame, Jaber, Maguy, Sakhno, Yuriy, Matheron, Lucrece, Fournier, Frederic, Méthivier, Christophe, Martra, Gianmario, Lambert, Jean‐Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 198
container_title European journal of inorganic chemistry
container_volume 2017
creator Georgelin, Thomas
Akouche, Mariame
Jaber, Maguy
Sakhno, Yuriy
Matheron, Lucrece
Fournier, Frederic
Méthivier, Christophe
Martra, Gianmario
Lambert, Jean‐Francois
description We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides. Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.
doi_str_mv 10.1002/ejic.201601296
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01547148v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880003210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFavngNe6mFrks1mk2Mp_Vgp1oPiMaTZhKZsN2uyVfvfm1Kp4MXTPIbfG2bmJcktgkMEIX7QG6uGGCIKEeb0LOkhyHkKKcPnUZOMpIgTdplchbCBEGYwo73krfSuGZRleQ-WX7bS4Ek2rpW-s6rWAcgAxrKT9T50ARjnQbfWYOr8VnbWNcAZsLCNlh7M6r2KCjzrtotjwnVyYWQd9M1P7Sev08nLeJ4ulrNyPFqkKmOEppKTSmFCZM4I5kXODDOS0QxiuoKoYEVWVUWlTMUrrZBh1BSUU4mjXBFDTNZP7o9z17IWrbdb6ffCSSvmo4U49CDKSYEI-0CRHRzZ1rv3nQ6d2NqgdF3LRrtdEIixw18wghG9-4Nu3M438ZJI5ZRQHqFIDY-U8i4Er81pAwTFIRNxyEScMokGfjR82lrv_6HF5LEc_3q_AVBDjbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856469103</pqid></control><display><type>article</type><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</creator><creatorcontrib>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</creatorcontrib><description>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides. Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201601296</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Adsorption ; Amino acids ; Catalysts ; Chemical Sciences ; Formations ; Glycine ; Infrared spectroscopy ; Iron ; Nanoparticles ; Oxidation ; Oxides ; Peptides ; Prebiotic chemistry</subject><ispartof>European journal of inorganic chemistry, 2017-01, Vol.2017 (1), p.198-211</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</citedby><cites>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</cites><orcidid>0000-0001-8241-9208 ; 0000-0002-8124-5709 ; 0000-0001-7772-1023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201601296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201601296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01547148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgelin, Thomas</creatorcontrib><creatorcontrib>Akouche, Mariame</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Sakhno, Yuriy</creatorcontrib><creatorcontrib>Matheron, Lucrece</creatorcontrib><creatorcontrib>Fournier, Frederic</creatorcontrib><creatorcontrib>Méthivier, Christophe</creatorcontrib><creatorcontrib>Martra, Gianmario</creatorcontrib><creatorcontrib>Lambert, Jean‐Francois</creatorcontrib><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><title>European journal of inorganic chemistry</title><description>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides. Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</description><subject>Activation</subject><subject>Adsorption</subject><subject>Amino acids</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Formations</subject><subject>Glycine</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Peptides</subject><subject>Prebiotic chemistry</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFavngNe6mFrks1mk2Mp_Vgp1oPiMaTZhKZsN2uyVfvfm1Kp4MXTPIbfG2bmJcktgkMEIX7QG6uGGCIKEeb0LOkhyHkKKcPnUZOMpIgTdplchbCBEGYwo73krfSuGZRleQ-WX7bS4Ek2rpW-s6rWAcgAxrKT9T50ARjnQbfWYOr8VnbWNcAZsLCNlh7M6r2KCjzrtotjwnVyYWQd9M1P7Sev08nLeJ4ulrNyPFqkKmOEppKTSmFCZM4I5kXODDOS0QxiuoKoYEVWVUWlTMUrrZBh1BSUU4mjXBFDTNZP7o9z17IWrbdb6ffCSSvmo4U49CDKSYEI-0CRHRzZ1rv3nQ6d2NqgdF3LRrtdEIixw18wghG9-4Nu3M438ZJI5ZRQHqFIDY-U8i4Er81pAwTFIRNxyEScMokGfjR82lrv_6HF5LEc_3q_AVBDjbk</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Georgelin, Thomas</creator><creator>Akouche, Mariame</creator><creator>Jaber, Maguy</creator><creator>Sakhno, Yuriy</creator><creator>Matheron, Lucrece</creator><creator>Fournier, Frederic</creator><creator>Méthivier, Christophe</creator><creator>Martra, Gianmario</creator><creator>Lambert, Jean‐Francois</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8241-9208</orcidid><orcidid>https://orcid.org/0000-0002-8124-5709</orcidid><orcidid>https://orcid.org/0000-0001-7772-1023</orcidid></search><sort><creationdate>20170103</creationdate><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><author>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Adsorption</topic><topic>Amino acids</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Formations</topic><topic>Glycine</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Peptides</topic><topic>Prebiotic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgelin, Thomas</creatorcontrib><creatorcontrib>Akouche, Mariame</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Sakhno, Yuriy</creatorcontrib><creatorcontrib>Matheron, Lucrece</creatorcontrib><creatorcontrib>Fournier, Frederic</creatorcontrib><creatorcontrib>Méthivier, Christophe</creatorcontrib><creatorcontrib>Martra, Gianmario</creatorcontrib><creatorcontrib>Lambert, Jean‐Francois</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgelin, Thomas</au><au>Akouche, Mariame</au><au>Jaber, Maguy</au><au>Sakhno, Yuriy</au><au>Matheron, Lucrece</au><au>Fournier, Frederic</au><au>Méthivier, Christophe</au><au>Martra, Gianmario</au><au>Lambert, Jean‐Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2017-01-03</date><risdate>2017</risdate><volume>2017</volume><issue>1</issue><spage>198</spage><epage>211</epage><pages>198-211</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides. Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201601296</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8241-9208</orcidid><orcidid>https://orcid.org/0000-0002-8124-5709</orcidid><orcidid>https://orcid.org/0000-0001-7772-1023</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2017-01, Vol.2017 (1), p.198-211
issn 1434-1948
1099-0682
language eng
recordid cdi_hal_primary_oai_HAL_hal_01547148v1
source Wiley Online Library Journals Frontfile Complete
subjects Activation
Adsorption
Amino acids
Catalysts
Chemical Sciences
Formations
Glycine
Infrared spectroscopy
Iron
Nanoparticles
Oxidation
Oxides
Peptides
Prebiotic chemistry
title Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron(III)%20Oxide%20Nanoparticles%20as%20Catalysts%20for%20the%20Formation%20of%20Linear%20Glycine%20Peptides&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Georgelin,%20Thomas&rft.date=2017-01-03&rft.volume=2017&rft.issue=1&rft.spage=198&rft.epage=211&rft.pages=198-211&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201601296&rft_dat=%3Cproquest_hal_p%3E1880003210%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856469103&rft_id=info:pmid/&rfr_iscdi=true