Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides
We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermo...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2017-01, Vol.2017 (1), p.198-211 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | European journal of inorganic chemistry |
container_volume | 2017 |
creator | Georgelin, Thomas Akouche, Mariame Jaber, Maguy Sakhno, Yuriy Matheron, Lucrece Fournier, Frederic Méthivier, Christophe Martra, Gianmario Lambert, Jean‐Francois |
description | We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides.
Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles. |
doi_str_mv | 10.1002/ejic.201601296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01547148v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880003210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFavngNe6mFrks1mk2Mp_Vgp1oPiMaTZhKZsN2uyVfvfm1Kp4MXTPIbfG2bmJcktgkMEIX7QG6uGGCIKEeb0LOkhyHkKKcPnUZOMpIgTdplchbCBEGYwo73krfSuGZRleQ-WX7bS4Ek2rpW-s6rWAcgAxrKT9T50ARjnQbfWYOr8VnbWNcAZsLCNlh7M6r2KCjzrtotjwnVyYWQd9M1P7Sev08nLeJ4ulrNyPFqkKmOEppKTSmFCZM4I5kXODDOS0QxiuoKoYEVWVUWlTMUrrZBh1BSUU4mjXBFDTNZP7o9z17IWrbdb6ffCSSvmo4U49CDKSYEI-0CRHRzZ1rv3nQ6d2NqgdF3LRrtdEIixw18wghG9-4Nu3M438ZJI5ZRQHqFIDY-U8i4Er81pAwTFIRNxyEScMokGfjR82lrv_6HF5LEc_3q_AVBDjbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856469103</pqid></control><display><type>article</type><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</creator><creatorcontrib>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</creatorcontrib><description>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides.
Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201601296</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Adsorption ; Amino acids ; Catalysts ; Chemical Sciences ; Formations ; Glycine ; Infrared spectroscopy ; Iron ; Nanoparticles ; Oxidation ; Oxides ; Peptides ; Prebiotic chemistry</subject><ispartof>European journal of inorganic chemistry, 2017-01, Vol.2017 (1), p.198-211</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</citedby><cites>FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</cites><orcidid>0000-0001-8241-9208 ; 0000-0002-8124-5709 ; 0000-0001-7772-1023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201601296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201601296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01547148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgelin, Thomas</creatorcontrib><creatorcontrib>Akouche, Mariame</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Sakhno, Yuriy</creatorcontrib><creatorcontrib>Matheron, Lucrece</creatorcontrib><creatorcontrib>Fournier, Frederic</creatorcontrib><creatorcontrib>Méthivier, Christophe</creatorcontrib><creatorcontrib>Martra, Gianmario</creatorcontrib><creatorcontrib>Lambert, Jean‐Francois</creatorcontrib><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><title>European journal of inorganic chemistry</title><description>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides.
Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</description><subject>Activation</subject><subject>Adsorption</subject><subject>Amino acids</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Formations</subject><subject>Glycine</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Peptides</subject><subject>Prebiotic chemistry</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFavngNe6mFrks1mk2Mp_Vgp1oPiMaTZhKZsN2uyVfvfm1Kp4MXTPIbfG2bmJcktgkMEIX7QG6uGGCIKEeb0LOkhyHkKKcPnUZOMpIgTdplchbCBEGYwo73krfSuGZRleQ-WX7bS4Ek2rpW-s6rWAcgAxrKT9T50ARjnQbfWYOr8VnbWNcAZsLCNlh7M6r2KCjzrtotjwnVyYWQd9M1P7Sev08nLeJ4ulrNyPFqkKmOEppKTSmFCZM4I5kXODDOS0QxiuoKoYEVWVUWlTMUrrZBh1BSUU4mjXBFDTNZP7o9z17IWrbdb6ffCSSvmo4U49CDKSYEI-0CRHRzZ1rv3nQ6d2NqgdF3LRrtdEIixw18wghG9-4Nu3M438ZJI5ZRQHqFIDY-U8i4Er81pAwTFIRNxyEScMokGfjR82lrv_6HF5LEc_3q_AVBDjbk</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Georgelin, Thomas</creator><creator>Akouche, Mariame</creator><creator>Jaber, Maguy</creator><creator>Sakhno, Yuriy</creator><creator>Matheron, Lucrece</creator><creator>Fournier, Frederic</creator><creator>Méthivier, Christophe</creator><creator>Martra, Gianmario</creator><creator>Lambert, Jean‐Francois</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8241-9208</orcidid><orcidid>https://orcid.org/0000-0002-8124-5709</orcidid><orcidid>https://orcid.org/0000-0001-7772-1023</orcidid></search><sort><creationdate>20170103</creationdate><title>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</title><author>Georgelin, Thomas ; Akouche, Mariame ; Jaber, Maguy ; Sakhno, Yuriy ; Matheron, Lucrece ; Fournier, Frederic ; Méthivier, Christophe ; Martra, Gianmario ; Lambert, Jean‐Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3846-a94dc244a58429758f8fa863026b017873dd7dcfd9dec1f86f7696a21f8b4f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Adsorption</topic><topic>Amino acids</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Formations</topic><topic>Glycine</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Peptides</topic><topic>Prebiotic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgelin, Thomas</creatorcontrib><creatorcontrib>Akouche, Mariame</creatorcontrib><creatorcontrib>Jaber, Maguy</creatorcontrib><creatorcontrib>Sakhno, Yuriy</creatorcontrib><creatorcontrib>Matheron, Lucrece</creatorcontrib><creatorcontrib>Fournier, Frederic</creatorcontrib><creatorcontrib>Méthivier, Christophe</creatorcontrib><creatorcontrib>Martra, Gianmario</creatorcontrib><creatorcontrib>Lambert, Jean‐Francois</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgelin, Thomas</au><au>Akouche, Mariame</au><au>Jaber, Maguy</au><au>Sakhno, Yuriy</au><au>Matheron, Lucrece</au><au>Fournier, Frederic</au><au>Méthivier, Christophe</au><au>Martra, Gianmario</au><au>Lambert, Jean‐Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2017-01-03</date><risdate>2017</risdate><volume>2017</volume><issue>1</issue><spage>198</spage><epage>211</epage><pages>198-211</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>We have studied the behavior upon thermal activation of glycine adsorbed on three well‐characterized Fe3+ oxide nanoparticle phases, maghemite, hematite, and akaganeite. The behavior of the adsorbed molecules and of the nanoparticle surfaces was monitored by four main experimental techniques, thermogravimetric analysis/differential thermal analysis (TGA/DTA), XPS, infrared spectroscopy (IR), and mass spectrometry. Glycine polymerizes by peptide bond formation in the 180–190 °C temperature range, which is somewhat higher than on previously studied oxides such as silica or alumina, giving mostly short linear peptides. At slightly higher temperatures, under an inert gas, the iron oxyhydroxides act as stoichiometric oxidants and cause oxidative degradation of the peptides formed in the previous step while they are reduced to FeO; under air, dioxygen causes reoxidation of the nanoparticle surfaces so that the overall effect is a catalytic oxidation by O2. While the direct formation of linear peptides may be beneficial to the growth of prebiotic complexity, the redox reactivity of the supports limits the temperature stability range of the oligopeptides.
Glycine was adsorbed on iron oxide nanoparticles, and peptide condensation was carried out by thermal activation. This activation allows the formation of small linear peptides. Infrared spectroscopy has enlightened the specific intramolecular structuration of the formed peptides on the particles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201601296</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8241-9208</orcidid><orcidid>https://orcid.org/0000-0002-8124-5709</orcidid><orcidid>https://orcid.org/0000-0001-7772-1023</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2017-01, Vol.2017 (1), p.198-211 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01547148v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activation Adsorption Amino acids Catalysts Chemical Sciences Formations Glycine Infrared spectroscopy Iron Nanoparticles Oxidation Oxides Peptides Prebiotic chemistry |
title | Iron(III) Oxide Nanoparticles as Catalysts for the Formation of Linear Glycine Peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron(III)%20Oxide%20Nanoparticles%20as%20Catalysts%20for%20the%20Formation%20of%20Linear%20Glycine%20Peptides&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Georgelin,%20Thomas&rft.date=2017-01-03&rft.volume=2017&rft.issue=1&rft.spage=198&rft.epage=211&rft.pages=198-211&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201601296&rft_dat=%3Cproquest_hal_p%3E1880003210%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856469103&rft_id=info:pmid/&rfr_iscdi=true |