Anchored reactive and proactive solutions to the CPM-scheduling problem
•Precedence constrained scheduling under uncertain durations.•Combinatorial criterion for robust optimization.•Anchored solutions for proactive precedence constrained scheduling.•Complexity and polynomial special cases. In a combinatorial optimization problem under uncertainty, it is never the case...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2017-08, Vol.261 (1), p.67-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | European journal of operational research |
container_volume | 261 |
creator | Bendotti, Pascale Chrétienne, Philippe Fouilhoux, Pierre Quilliot, Alain |
description | •Precedence constrained scheduling under uncertain durations.•Combinatorial criterion for robust optimization.•Anchored solutions for proactive precedence constrained scheduling.•Complexity and polynomial special cases.
In a combinatorial optimization problem under uncertainty, it is never the case that the real instance is exactly the baseline instance that has been solved earlier. The anchorage level is the number of individual decisions with the same value in the solutions of the baseline and the real instances. We consider the case of CPM-scheduling with simple precedence constraints when the job durations of the real instance may be different than those of the baseline instance. We show that, given a solution of the baseline instance, computing a reactive solution of the real instance with a maximum anchorage level is a polynomial problem. This maximum level is called the anchorage strength of the baseline solution with respect to the real instance. We also prove that this latter problem becomes NP-hard when the real schedule must satisfy time windows constraints. We finally consider the problem of finding a proactive solution of the baseline instance whose guaranteed anchorage strength is maximum with respect to a subset of real instances. When each real duration belongs to a known uncertainty interval, we show that such a proactive solution (possibly with a deadline constraint) can be polynomially computed. |
doi_str_mv | 10.1016/j.ejor.2017.02.007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01545599v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221717301121</els_id><sourcerecordid>S0377221717301121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-ddd5f727d8224d2b364b7b64b2cd4e5d402595aeac099f3f5c781ab42c0a57573</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU-9emidpE3Tgpdl0V2hogc9hzSZ2pRusyTdBf-9Lbt49DLDDO8b5j1C7ikkFGj-2CXYOZ8woCIBlgCIC7KghWBxXuRwSRaQChEzRsU1uQmhAwDKKV-QzWrQrfNoIo9Kj_aIkRpMtPfuPAXXH0brhhCNLhpbjNYfb3HQLZpDb4fvWVn3uLslV43qA96d-5J8vTx_rrdx9b55Xa-qWKd5PsbGGN4IJkzBWGZYneZZLeqpMG0y5CYDxkuuplegLJu04VoUVNUZ06C44CJdkofT3Vb1cu_tTvkf6ZSV21Ul593kK-O8LI900rKTVnsXgsfmD6Ag59hkJ-fY5BybBCan2Cbo6QTh5OJo0cugLQ4ajfWoR2mc_Q__BfGFdfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anchored reactive and proactive solutions to the CPM-scheduling problem</title><source>Elsevier ScienceDirect Journals</source><creator>Bendotti, Pascale ; Chrétienne, Philippe ; Fouilhoux, Pierre ; Quilliot, Alain</creator><creatorcontrib>Bendotti, Pascale ; Chrétienne, Philippe ; Fouilhoux, Pierre ; Quilliot, Alain</creatorcontrib><description>•Precedence constrained scheduling under uncertain durations.•Combinatorial criterion for robust optimization.•Anchored solutions for proactive precedence constrained scheduling.•Complexity and polynomial special cases.
In a combinatorial optimization problem under uncertainty, it is never the case that the real instance is exactly the baseline instance that has been solved earlier. The anchorage level is the number of individual decisions with the same value in the solutions of the baseline and the real instances. We consider the case of CPM-scheduling with simple precedence constraints when the job durations of the real instance may be different than those of the baseline instance. We show that, given a solution of the baseline instance, computing a reactive solution of the real instance with a maximum anchorage level is a polynomial problem. This maximum level is called the anchorage strength of the baseline solution with respect to the real instance. We also prove that this latter problem becomes NP-hard when the real schedule must satisfy time windows constraints. We finally consider the problem of finding a proactive solution of the baseline instance whose guaranteed anchorage strength is maximum with respect to a subset of real instances. When each real duration belongs to a known uncertainty interval, we show that such a proactive solution (possibly with a deadline constraint) can be polynomially computed.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2017.02.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anchored solutions ; Computer Science ; Operations Research ; Robust optimization ; Scheduling</subject><ispartof>European journal of operational research, 2017-08, Vol.261 (1), p.67-74</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-ddd5f727d8224d2b364b7b64b2cd4e5d402595aeac099f3f5c781ab42c0a57573</citedby><cites>FETCH-LOGICAL-c366t-ddd5f727d8224d2b364b7b64b2cd4e5d402595aeac099f3f5c781ab42c0a57573</cites><orcidid>0000-0001-6350-3316 ; 0000-0002-4507-5757 ; 0000-0002-4746-5783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221717301121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01545599$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendotti, Pascale</creatorcontrib><creatorcontrib>Chrétienne, Philippe</creatorcontrib><creatorcontrib>Fouilhoux, Pierre</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><title>Anchored reactive and proactive solutions to the CPM-scheduling problem</title><title>European journal of operational research</title><description>•Precedence constrained scheduling under uncertain durations.•Combinatorial criterion for robust optimization.•Anchored solutions for proactive precedence constrained scheduling.•Complexity and polynomial special cases.
In a combinatorial optimization problem under uncertainty, it is never the case that the real instance is exactly the baseline instance that has been solved earlier. The anchorage level is the number of individual decisions with the same value in the solutions of the baseline and the real instances. We consider the case of CPM-scheduling with simple precedence constraints when the job durations of the real instance may be different than those of the baseline instance. We show that, given a solution of the baseline instance, computing a reactive solution of the real instance with a maximum anchorage level is a polynomial problem. This maximum level is called the anchorage strength of the baseline solution with respect to the real instance. We also prove that this latter problem becomes NP-hard when the real schedule must satisfy time windows constraints. We finally consider the problem of finding a proactive solution of the baseline instance whose guaranteed anchorage strength is maximum with respect to a subset of real instances. When each real duration belongs to a known uncertainty interval, we show that such a proactive solution (possibly with a deadline constraint) can be polynomially computed.</description><subject>Anchored solutions</subject><subject>Computer Science</subject><subject>Operations Research</subject><subject>Robust optimization</subject><subject>Scheduling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU-9emidpE3Tgpdl0V2hogc9hzSZ2pRusyTdBf-9Lbt49DLDDO8b5j1C7ikkFGj-2CXYOZ8woCIBlgCIC7KghWBxXuRwSRaQChEzRsU1uQmhAwDKKV-QzWrQrfNoIo9Kj_aIkRpMtPfuPAXXH0brhhCNLhpbjNYfb3HQLZpDb4fvWVn3uLslV43qA96d-5J8vTx_rrdx9b55Xa-qWKd5PsbGGN4IJkzBWGZYneZZLeqpMG0y5CYDxkuuplegLJu04VoUVNUZ06C44CJdkofT3Vb1cu_tTvkf6ZSV21Ul593kK-O8LI900rKTVnsXgsfmD6Ag59hkJ-fY5BybBCan2Cbo6QTh5OJo0cugLQ4ajfWoR2mc_Q__BfGFdfk</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Bendotti, Pascale</creator><creator>Chrétienne, Philippe</creator><creator>Fouilhoux, Pierre</creator><creator>Quilliot, Alain</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6350-3316</orcidid><orcidid>https://orcid.org/0000-0002-4507-5757</orcidid><orcidid>https://orcid.org/0000-0002-4746-5783</orcidid></search><sort><creationdate>20170816</creationdate><title>Anchored reactive and proactive solutions to the CPM-scheduling problem</title><author>Bendotti, Pascale ; Chrétienne, Philippe ; Fouilhoux, Pierre ; Quilliot, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-ddd5f727d8224d2b364b7b64b2cd4e5d402595aeac099f3f5c781ab42c0a57573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anchored solutions</topic><topic>Computer Science</topic><topic>Operations Research</topic><topic>Robust optimization</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendotti, Pascale</creatorcontrib><creatorcontrib>Chrétienne, Philippe</creatorcontrib><creatorcontrib>Fouilhoux, Pierre</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendotti, Pascale</au><au>Chrétienne, Philippe</au><au>Fouilhoux, Pierre</au><au>Quilliot, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anchored reactive and proactive solutions to the CPM-scheduling problem</atitle><jtitle>European journal of operational research</jtitle><date>2017-08-16</date><risdate>2017</risdate><volume>261</volume><issue>1</issue><spage>67</spage><epage>74</epage><pages>67-74</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><abstract>•Precedence constrained scheduling under uncertain durations.•Combinatorial criterion for robust optimization.•Anchored solutions for proactive precedence constrained scheduling.•Complexity and polynomial special cases.
In a combinatorial optimization problem under uncertainty, it is never the case that the real instance is exactly the baseline instance that has been solved earlier. The anchorage level is the number of individual decisions with the same value in the solutions of the baseline and the real instances. We consider the case of CPM-scheduling with simple precedence constraints when the job durations of the real instance may be different than those of the baseline instance. We show that, given a solution of the baseline instance, computing a reactive solution of the real instance with a maximum anchorage level is a polynomial problem. This maximum level is called the anchorage strength of the baseline solution with respect to the real instance. We also prove that this latter problem becomes NP-hard when the real schedule must satisfy time windows constraints. We finally consider the problem of finding a proactive solution of the baseline instance whose guaranteed anchorage strength is maximum with respect to a subset of real instances. When each real duration belongs to a known uncertainty interval, we show that such a proactive solution (possibly with a deadline constraint) can be polynomially computed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2017.02.007</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6350-3316</orcidid><orcidid>https://orcid.org/0000-0002-4507-5757</orcidid><orcidid>https://orcid.org/0000-0002-4746-5783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2017-08, Vol.261 (1), p.67-74 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01545599v1 |
source | Elsevier ScienceDirect Journals |
subjects | Anchored solutions Computer Science Operations Research Robust optimization Scheduling |
title | Anchored reactive and proactive solutions to the CPM-scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anchored%20reactive%20and%20proactive%20solutions%20to%20the%20CPM-scheduling%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Bendotti,%20Pascale&rft.date=2017-08-16&rft.volume=261&rft.issue=1&rft.spage=67&rft.epage=74&rft.pages=67-74&rft.issn=0377-2217&rft.eissn=1872-6860&rft_id=info:doi/10.1016/j.ejor.2017.02.007&rft_dat=%3Celsevier_hal_p%3ES0377221717301121%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0377221717301121&rfr_iscdi=true |