Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation

The energy of solutions of the scalar damped wave equation decays uniformly exponentially fast when the geometric control condition is satisfied. A theorem of Lebeau [Leb93] gives an expression of this exponential decay rate in terms of the average value of the damping terms along geodesics and of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2018-01, Vol.56 (5), p.3432-3453
1. Verfasser: Klein, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3453
container_issue 5
container_start_page 3432
container_title SIAM journal on control and optimization
container_volume 56
creator Klein, Guillaume
description The energy of solutions of the scalar damped wave equation decays uniformly exponentially fast when the geometric control condition is satisfied. A theorem of Lebeau [Leb93] gives an expression of this exponential decay rate in terms of the average value of the damping terms along geodesics and of the spectrum of the infinitesimal generator of the equation. The aim of this text is to generalize this result in the setting of a vectorial damped wave equation on a Riemannian manifold with no boundary. We obtain an expression analogous to Lebeau's one but new phenomena like high frequency overdamping arise in comparison to the scalar setting. We also prove a necessary and sufficient condition for the strong stabilization of the vectorial wave equation.
doi_str_mv 10.1137/17M1142636
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01543704v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01543704v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-186dcceab8603b87efc2893a6f17ec868b167da8c7a209870bb2ed350c00d1193</originalsourceid><addsrcrecordid>eNpFkE1Lw0AURQdRsFY3_oLZKkTfy6Qzk2Wt0QoRQfxYhpfJi420mTpJi_33Wiu6unA59y6OEKcIF4jKXKK5R0xirfSeGCCko8igsvtiAEqrCDBOD8VR170DYJJgMhD5FXe9zD6XvuW2b2gur9nRRj5Sz9LXMms5vG1k7YPsZyxf2PU-_GC0WHIlX2nNMvtYUd_49lgc1DTv-OQ3h-L5JnuaTKP84fZuMs4jpwD7CK2unGMqrQZVWsO1i22qSNdo2FltS9SmIusMxZBaA2UZc6VG4AAqxFQNxdnud0bzYhmaBYVN4akppuO82HaAo0QZSNbxN3u-Y13wXRe4_hsgFFtnxb8z9QU34VyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation</title><source>SIAM Journals Online</source><creator>Klein, Guillaume</creator><creatorcontrib>Klein, Guillaume</creatorcontrib><description>The energy of solutions of the scalar damped wave equation decays uniformly exponentially fast when the geometric control condition is satisfied. A theorem of Lebeau [Leb93] gives an expression of this exponential decay rate in terms of the average value of the damping terms along geodesics and of the spectrum of the infinitesimal generator of the equation. The aim of this text is to generalize this result in the setting of a vectorial damped wave equation on a Riemannian manifold with no boundary. We obtain an expression analogous to Lebeau's one but new phenomena like high frequency overdamping arise in comparison to the scalar setting. We also prove a necessary and sufficient condition for the strong stabilization of the vectorial wave equation.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/17M1142636</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Analysis of PDEs ; Mathematics ; Optimization and Control</subject><ispartof>SIAM journal on control and optimization, 2018-01, Vol.56 (5), p.3432-3453</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-186dcceab8603b87efc2893a6f17ec868b167da8c7a209870bb2ed350c00d1193</citedby><cites>FETCH-LOGICAL-c301t-186dcceab8603b87efc2893a6f17ec868b167da8c7a209870bb2ed350c00d1193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3184,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01543704$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Guillaume</creatorcontrib><title>Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation</title><title>SIAM journal on control and optimization</title><description>The energy of solutions of the scalar damped wave equation decays uniformly exponentially fast when the geometric control condition is satisfied. A theorem of Lebeau [Leb93] gives an expression of this exponential decay rate in terms of the average value of the damping terms along geodesics and of the spectrum of the infinitesimal generator of the equation. The aim of this text is to generalize this result in the setting of a vectorial damped wave equation on a Riemannian manifold with no boundary. We obtain an expression analogous to Lebeau's one but new phenomena like high frequency overdamping arise in comparison to the scalar setting. We also prove a necessary and sufficient condition for the strong stabilization of the vectorial wave equation.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AURQdRsFY3_oLZKkTfy6Qzk2Wt0QoRQfxYhpfJi420mTpJi_33Wiu6unA59y6OEKcIF4jKXKK5R0xirfSeGCCko8igsvtiAEqrCDBOD8VR170DYJJgMhD5FXe9zD6XvuW2b2gur9nRRj5Sz9LXMms5vG1k7YPsZyxf2PU-_GC0WHIlX2nNMvtYUd_49lgc1DTv-OQ3h-L5JnuaTKP84fZuMs4jpwD7CK2unGMqrQZVWsO1i22qSNdo2FltS9SmIusMxZBaA2UZc6VG4AAqxFQNxdnud0bzYhmaBYVN4akppuO82HaAo0QZSNbxN3u-Y13wXRe4_hsgFFtnxb8z9QU34VyR</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Klein, Guillaume</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201801</creationdate><title>Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation</title><author>Klein, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-186dcceab8603b87efc2893a6f17ec868b167da8c7a209870bb2ed350c00d1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Guillaume</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>5</issue><spage>3432</spage><epage>3453</epage><pages>3432-3453</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>The energy of solutions of the scalar damped wave equation decays uniformly exponentially fast when the geometric control condition is satisfied. A theorem of Lebeau [Leb93] gives an expression of this exponential decay rate in terms of the average value of the damping terms along geodesics and of the spectrum of the infinitesimal generator of the equation. The aim of this text is to generalize this result in the setting of a vectorial damped wave equation on a Riemannian manifold with no boundary. We obtain an expression analogous to Lebeau's one but new phenomena like high frequency overdamping arise in comparison to the scalar setting. We also prove a necessary and sufficient condition for the strong stabilization of the vectorial wave equation.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/17M1142636</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2018-01, Vol.56 (5), p.3432-3453
issn 0363-0129
1095-7138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01543704v2
source SIAM Journals Online
subjects Analysis of PDEs
Mathematics
Optimization and Control
title Best Exponential Decay Rate of Energy for the Vectorial Damped Wave Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20Exponential%20Decay%20Rate%20of%20Energy%20for%20the%20Vectorial%20Damped%20Wave%20Equation&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Klein,%20Guillaume&rft.date=2018-01&rft.volume=56&rft.issue=5&rft.spage=3432&rft.epage=3453&rft.pages=3432-3453&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/17M1142636&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01543704v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true