C and N models Intercomparison – benchmark and ensemble model estimates for grassland production

Much of the uncertainty in crop and grassland model predictions of how arable and grassland systems respond to changes in management and environmental drivers can be attributed to differences in the structure of these models. This has created an urgent need for international benchmarking of models,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in animal biosciences 2016-11, Vol.7 (3), p.245-247
Hauptverfasser: Sándor, R., Ehrhardt, F., Basso, B., Bellocchi, G., Bhatia, A., Brilli, L., Migliorati, M. De Antoni, Doltra, J., Dorich, C., Doro, L., Fitton, N., Giacomini, S. J., Grace, P., Grant, B., Harrison, M. T., Jones, S., Kirschbaum, M. U. F., Klumpp, K., Laville, P., Léonard, J., Liebig, M., Lieffering, M., Martin, R., McAuliffe, R., Meier, E., Merbold, L., Moore, A., Myrgiotis, V., Newton, P., Pattey, E., Recous, S., Rolinski, S., Sharp, J., Massad, R. S., Smith, P., Smith, W., Snow, V., Wu, L., Zhang, Q., Soussana, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much of the uncertainty in crop and grassland model predictions of how arable and grassland systems respond to changes in management and environmental drivers can be attributed to differences in the structure of these models. This has created an urgent need for international benchmarking of models, in which uncertainties are estimated by running several models that simulate the same physical and management conditions to generate expanded envelopes of uncertainty in model predictions. This study presents some preliminary results on the uncertainty of outputs from 12 grassland models, whereas exploring differences in model response when increasing data resources are used for model calibration.
ISSN:2040-4700
2040-4719
DOI:10.1017/S2040470016000297