An exponential integrator for the drift-kinetic model

We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2018-03, Vol.224, p.144-153
Hauptverfasser: Crouseilles, Nicolas, Einkemmer, Lukas, Prugger, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue
container_start_page 144
container_title Computer physics communications
container_volume 224
creator Crouseilles, Nicolas
Einkemmer, Lukas
Prugger, Martina
description We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step. In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.
doi_str_mv 10.1016/j.cpc.2017.11.003
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01538450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465517303867</els_id><sourcerecordid>S0010465517303867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANx65dBiN03TitM0AUOaxAXOUZo4LKNrpzSa4O3JNMSRg2XJ-j_L_hi7RSgQsL7fFmZvihJQFogFAD9jM2xkm5dtVZ2zGQBCXtVCXLKradoCgJQtnzGxGDL62o8DDdHrPvNDpI-g4xgylypuKLPBu5h_-oGiN9lutNRfswun-4lufvucvT89vi1X-fr1-WW5WOeGc4y55q3B1tjOStOWuqkdlwYlOl47I1FD2bQaoew0CcEN2To9UDsCKzrOu4bP2d1p70b3ah_8TodvNWqvVou1Os4ABW8qAQdMWTxlTRinKZD7AxDU0ZHaquRIHR0pRJUcJebhxFB64uApqMl4GtIlPpCJyo7-H_oH9ptt8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An exponential integrator for the drift-kinetic model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</creator><creatorcontrib>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</creatorcontrib><description>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step. In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2017.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Physics ; Computer Science ; Conservative numerical methods ; Drift kinetics ; Exponential integrators ; Numerical Analysis ; Physics</subject><ispartof>Computer physics communications, 2018-03, Vol.224, p.144-153</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</citedby><cites>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</cites><orcidid>0000-0002-8798-2304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465517303867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01538450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crouseilles, Nicolas</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><creatorcontrib>Prugger, Martina</creatorcontrib><title>An exponential integrator for the drift-kinetic model</title><title>Computer physics communications</title><description>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step. In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</description><subject>Computational Physics</subject><subject>Computer Science</subject><subject>Conservative numerical methods</subject><subject>Drift kinetics</subject><subject>Exponential integrators</subject><subject>Numerical Analysis</subject><subject>Physics</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANx65dBiN03TitM0AUOaxAXOUZo4LKNrpzSa4O3JNMSRg2XJ-j_L_hi7RSgQsL7fFmZvihJQFogFAD9jM2xkm5dtVZ2zGQBCXtVCXLKradoCgJQtnzGxGDL62o8DDdHrPvNDpI-g4xgylypuKLPBu5h_-oGiN9lutNRfswun-4lufvucvT89vi1X-fr1-WW5WOeGc4y55q3B1tjOStOWuqkdlwYlOl47I1FD2bQaoew0CcEN2To9UDsCKzrOu4bP2d1p70b3ah_8TodvNWqvVou1Os4ABW8qAQdMWTxlTRinKZD7AxDU0ZHaquRIHR0pRJUcJebhxFB64uApqMl4GtIlPpCJyo7-H_oH9ptt8A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Crouseilles, Nicolas</creator><creator>Einkemmer, Lukas</creator><creator>Prugger, Martina</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8798-2304</orcidid></search><sort><creationdate>20180301</creationdate><title>An exponential integrator for the drift-kinetic model</title><author>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Physics</topic><topic>Computer Science</topic><topic>Conservative numerical methods</topic><topic>Drift kinetics</topic><topic>Exponential integrators</topic><topic>Numerical Analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crouseilles, Nicolas</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><creatorcontrib>Prugger, Martina</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crouseilles, Nicolas</au><au>Einkemmer, Lukas</au><au>Prugger, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exponential integrator for the drift-kinetic model</atitle><jtitle>Computer physics communications</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>224</volume><spage>144</spage><epage>153</epage><pages>144-153</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step. In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2017.11.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8798-2304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2018-03, Vol.224, p.144-153
issn 0010-4655
1879-2944
language eng
recordid cdi_hal_primary_oai_HAL_hal_01538450v1
source Elsevier ScienceDirect Journals Complete
subjects Computational Physics
Computer Science
Conservative numerical methods
Drift kinetics
Exponential integrators
Numerical Analysis
Physics
title An exponential integrator for the drift-kinetic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exponential%20integrator%20for%20the%20drift-kinetic%20model&rft.jtitle=Computer%20physics%20communications&rft.au=Crouseilles,%20Nicolas&rft.date=2018-03-01&rft.volume=224&rft.spage=144&rft.epage=153&rft.pages=144-153&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2017.11.003&rft_dat=%3Celsevier_hal_p%3ES0010465517303867%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0010465517303867&rfr_iscdi=true