An exponential integrator for the drift-kinetic model
We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference sc...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2018-03, Vol.224, p.144-153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | |
container_start_page | 144 |
container_title | Computer physics communications |
container_volume | 224 |
creator | Crouseilles, Nicolas Einkemmer, Lukas Prugger, Martina |
description | We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step.
In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation. |
doi_str_mv | 10.1016/j.cpc.2017.11.003 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01538450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465517303867</els_id><sourcerecordid>S0010465517303867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANx65dBiN03TitM0AUOaxAXOUZo4LKNrpzSa4O3JNMSRg2XJ-j_L_hi7RSgQsL7fFmZvihJQFogFAD9jM2xkm5dtVZ2zGQBCXtVCXLKradoCgJQtnzGxGDL62o8DDdHrPvNDpI-g4xgylypuKLPBu5h_-oGiN9lutNRfswun-4lufvucvT89vi1X-fr1-WW5WOeGc4y55q3B1tjOStOWuqkdlwYlOl47I1FD2bQaoew0CcEN2To9UDsCKzrOu4bP2d1p70b3ah_8TodvNWqvVou1Os4ABW8qAQdMWTxlTRinKZD7AxDU0ZHaquRIHR0pRJUcJebhxFB64uApqMl4GtIlPpCJyo7-H_oH9ptt8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An exponential integrator for the drift-kinetic model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</creator><creatorcontrib>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</creatorcontrib><description>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step.
In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2017.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Physics ; Computer Science ; Conservative numerical methods ; Drift kinetics ; Exponential integrators ; Numerical Analysis ; Physics</subject><ispartof>Computer physics communications, 2018-03, Vol.224, p.144-153</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</citedby><cites>FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</cites><orcidid>0000-0002-8798-2304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465517303867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01538450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crouseilles, Nicolas</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><creatorcontrib>Prugger, Martina</creatorcontrib><title>An exponential integrator for the drift-kinetic model</title><title>Computer physics communications</title><description>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step.
In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</description><subject>Computational Physics</subject><subject>Computer Science</subject><subject>Conservative numerical methods</subject><subject>Drift kinetics</subject><subject>Exponential integrators</subject><subject>Numerical Analysis</subject><subject>Physics</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANx65dBiN03TitM0AUOaxAXOUZo4LKNrpzSa4O3JNMSRg2XJ-j_L_hi7RSgQsL7fFmZvihJQFogFAD9jM2xkm5dtVZ2zGQBCXtVCXLKradoCgJQtnzGxGDL62o8DDdHrPvNDpI-g4xgylypuKLPBu5h_-oGiN9lutNRfswun-4lufvucvT89vi1X-fr1-WW5WOeGc4y55q3B1tjOStOWuqkdlwYlOl47I1FD2bQaoew0CcEN2To9UDsCKzrOu4bP2d1p70b3ah_8TodvNWqvVou1Os4ABW8qAQdMWTxlTRinKZD7AxDU0ZHaquRIHR0pRJUcJebhxFB64uApqMl4GtIlPpCJyo7-H_oH9ptt8A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Crouseilles, Nicolas</creator><creator>Einkemmer, Lukas</creator><creator>Prugger, Martina</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8798-2304</orcidid></search><sort><creationdate>20180301</creationdate><title>An exponential integrator for the drift-kinetic model</title><author>Crouseilles, Nicolas ; Einkemmer, Lukas ; Prugger, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a39c19cdbd7c92a86f37c171f36fc71a0289a102bae553ced62016fe0d5b33b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational Physics</topic><topic>Computer Science</topic><topic>Conservative numerical methods</topic><topic>Drift kinetics</topic><topic>Exponential integrators</topic><topic>Numerical Analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crouseilles, Nicolas</creatorcontrib><creatorcontrib>Einkemmer, Lukas</creatorcontrib><creatorcontrib>Prugger, Martina</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crouseilles, Nicolas</au><au>Einkemmer, Lukas</au><au>Prugger, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exponential integrator for the drift-kinetic model</atitle><jtitle>Computer physics communications</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>224</volume><spage>144</spage><epage>153</epage><pages>144-153</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa’s finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step.
In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2017.11.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8798-2304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2018-03, Vol.224, p.144-153 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01538450v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational Physics Computer Science Conservative numerical methods Drift kinetics Exponential integrators Numerical Analysis Physics |
title | An exponential integrator for the drift-kinetic model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exponential%20integrator%20for%20the%20drift-kinetic%20model&rft.jtitle=Computer%20physics%20communications&rft.au=Crouseilles,%20Nicolas&rft.date=2018-03-01&rft.volume=224&rft.spage=144&rft.epage=153&rft.pages=144-153&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2017.11.003&rft_dat=%3Celsevier_hal_p%3ES0010465517303867%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0010465517303867&rfr_iscdi=true |