A probabilistic graphical model for describing the grape berry maturity

•Dynamic Bayesian networks for coupling heterogeneous data and expertise knowledge.•The modeling of grape berry maturity over the time tainted with uncertainty.•Prediction of sugar, acidity and anthocyanin concentrations over the maturity. Grape berry maturation depends on complex and coupled physio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2015-10, Vol.118, p.124-135
Hauptverfasser: Baudrit, Cédric, Perrot, Nathalie, Brousset, Jean Marie, Abbal, Philippe, Guillemin, Hervé, Perret, Bruno, Goulet, Etienne, Guerin, Laurence, Barbeau, Gérard, Picque, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 124
container_title Computers and electronics in agriculture
container_volume 118
creator Baudrit, Cédric
Perrot, Nathalie
Brousset, Jean Marie
Abbal, Philippe
Guillemin, Hervé
Perret, Bruno
Goulet, Etienne
Guerin, Laurence
Barbeau, Gérard
Picque, Daniel
description •Dynamic Bayesian networks for coupling heterogeneous data and expertise knowledge.•The modeling of grape berry maturity over the time tainted with uncertainty.•Prediction of sugar, acidity and anthocyanin concentrations over the maturity. Grape berry maturation depends on complex and coupled physiological and biochemical reactions which are climate dependant. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert prediction. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a robust mathematical model able (1) to capitalize the heterogeneous fragmented available knowledge including data and expertise by means of probabilistic graphical approaches; and (2) to predict sugar, acidity and anthocyanin concentrations over the maturity.
doi_str_mv 10.1016/j.compag.2015.08.019
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01535300v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169915002458</els_id><sourcerecordid>1770316795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-3f0bcc64e04e23af4fcc33f1a5736fb1bfbb124b34267c59df513563d5bbc6cf3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgywpBgx0mcLEhVBS1SJRaYLftybl0ldbHTSv33uAQxMp3u9L13eo-Qe0YzRln1tM3A9Xu1znLKyozWGWXNBZmwWuSpYFRckknE6pRVTXNNbkLY0rg3tZiQxSzZe6eVtp0Ng4Vk7dV-Y0F1Se9a7BLjfNJiAG-13a2TYYM_CCYavT8lvRoO3g6nW3JlVBfw7ndOyefry8d8ma7eF2_z2SoFLviQckM1QFUgLTDnyhQGgHPDVCl4ZTTTRmuWF5oXeSWgbFpTMl5WvC21hgoMn5LH0XejOrn3tlf-JJ2ycjlbyfMtNsBLTumRRfZhZGPCrwOGQfY2AHad2qE7BMmEoJxVoikjWowoeBeCR_Pnzag8dyy3cuxYnjuWtI6Pmih7HmUYIx8tehnA4g6wtR5hkK2z_xt8A219hv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770316795</pqid></control><display><type>article</type><title>A probabilistic graphical model for describing the grape berry maturity</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baudrit, Cédric ; Perrot, Nathalie ; Brousset, Jean Marie ; Abbal, Philippe ; Guillemin, Hervé ; Perret, Bruno ; Goulet, Etienne ; Guerin, Laurence ; Barbeau, Gérard ; Picque, Daniel</creator><creatorcontrib>Baudrit, Cédric ; Perrot, Nathalie ; Brousset, Jean Marie ; Abbal, Philippe ; Guillemin, Hervé ; Perret, Bruno ; Goulet, Etienne ; Guerin, Laurence ; Barbeau, Gérard ; Picque, Daniel</creatorcontrib><description>•Dynamic Bayesian networks for coupling heterogeneous data and expertise knowledge.•The modeling of grape berry maturity over the time tainted with uncertainty.•Prediction of sugar, acidity and anthocyanin concentrations over the maturity. Grape berry maturation depends on complex and coupled physiological and biochemical reactions which are climate dependant. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert prediction. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a robust mathematical model able (1) to capitalize the heterogeneous fragmented available knowledge including data and expertise by means of probabilistic graphical approaches; and (2) to predict sugar, acidity and anthocyanin concentrations over the maturity.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2015.08.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agricultural sciences ; Berries ; Biochemistry ; Climate ; Dynamic Bayesian networks ; Grapes ; Knowledge integration ; Life Sciences ; Mathematical models ; Modeling ; Probabilistic methods ; Probability theory ; Sustainability ; Uncertainty ; Vegetal Biology ; Wine</subject><ispartof>Computers and electronics in agriculture, 2015-10, Vol.118, p.124-135</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-3f0bcc64e04e23af4fcc33f1a5736fb1bfbb124b34267c59df513563d5bbc6cf3</citedby><cites>FETCH-LOGICAL-c373t-3f0bcc64e04e23af4fcc33f1a5736fb1bfbb124b34267c59df513563d5bbc6cf3</cites><orcidid>0000-0003-4320-3345 ; 0000-0003-3795-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2015.08.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01535300$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baudrit, Cédric</creatorcontrib><creatorcontrib>Perrot, Nathalie</creatorcontrib><creatorcontrib>Brousset, Jean Marie</creatorcontrib><creatorcontrib>Abbal, Philippe</creatorcontrib><creatorcontrib>Guillemin, Hervé</creatorcontrib><creatorcontrib>Perret, Bruno</creatorcontrib><creatorcontrib>Goulet, Etienne</creatorcontrib><creatorcontrib>Guerin, Laurence</creatorcontrib><creatorcontrib>Barbeau, Gérard</creatorcontrib><creatorcontrib>Picque, Daniel</creatorcontrib><title>A probabilistic graphical model for describing the grape berry maturity</title><title>Computers and electronics in agriculture</title><description>•Dynamic Bayesian networks for coupling heterogeneous data and expertise knowledge.•The modeling of grape berry maturity over the time tainted with uncertainty.•Prediction of sugar, acidity and anthocyanin concentrations over the maturity. Grape berry maturation depends on complex and coupled physiological and biochemical reactions which are climate dependant. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert prediction. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a robust mathematical model able (1) to capitalize the heterogeneous fragmented available knowledge including data and expertise by means of probabilistic graphical approaches; and (2) to predict sugar, acidity and anthocyanin concentrations over the maturity.</description><subject>Agricultural sciences</subject><subject>Berries</subject><subject>Biochemistry</subject><subject>Climate</subject><subject>Dynamic Bayesian networks</subject><subject>Grapes</subject><subject>Knowledge integration</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Sustainability</subject><subject>Uncertainty</subject><subject>Vegetal Biology</subject><subject>Wine</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgywpBgx0mcLEhVBS1SJRaYLftybl0ldbHTSv33uAQxMp3u9L13eo-Qe0YzRln1tM3A9Xu1znLKyozWGWXNBZmwWuSpYFRckknE6pRVTXNNbkLY0rg3tZiQxSzZe6eVtp0Ng4Vk7dV-Y0F1Se9a7BLjfNJiAG-13a2TYYM_CCYavT8lvRoO3g6nW3JlVBfw7ndOyefry8d8ma7eF2_z2SoFLviQckM1QFUgLTDnyhQGgHPDVCl4ZTTTRmuWF5oXeSWgbFpTMl5WvC21hgoMn5LH0XejOrn3tlf-JJ2ycjlbyfMtNsBLTumRRfZhZGPCrwOGQfY2AHad2qE7BMmEoJxVoikjWowoeBeCR_Pnzag8dyy3cuxYnjuWtI6Pmih7HmUYIx8tehnA4g6wtR5hkK2z_xt8A219hv4</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Baudrit, Cédric</creator><creator>Perrot, Nathalie</creator><creator>Brousset, Jean Marie</creator><creator>Abbal, Philippe</creator><creator>Guillemin, Hervé</creator><creator>Perret, Bruno</creator><creator>Goulet, Etienne</creator><creator>Guerin, Laurence</creator><creator>Barbeau, Gérard</creator><creator>Picque, Daniel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4320-3345</orcidid><orcidid>https://orcid.org/0000-0003-3795-0838</orcidid></search><sort><creationdate>20151001</creationdate><title>A probabilistic graphical model for describing the grape berry maturity</title><author>Baudrit, Cédric ; Perrot, Nathalie ; Brousset, Jean Marie ; Abbal, Philippe ; Guillemin, Hervé ; Perret, Bruno ; Goulet, Etienne ; Guerin, Laurence ; Barbeau, Gérard ; Picque, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-3f0bcc64e04e23af4fcc33f1a5736fb1bfbb124b34267c59df513563d5bbc6cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural sciences</topic><topic>Berries</topic><topic>Biochemistry</topic><topic>Climate</topic><topic>Dynamic Bayesian networks</topic><topic>Grapes</topic><topic>Knowledge integration</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Sustainability</topic><topic>Uncertainty</topic><topic>Vegetal Biology</topic><topic>Wine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudrit, Cédric</creatorcontrib><creatorcontrib>Perrot, Nathalie</creatorcontrib><creatorcontrib>Brousset, Jean Marie</creatorcontrib><creatorcontrib>Abbal, Philippe</creatorcontrib><creatorcontrib>Guillemin, Hervé</creatorcontrib><creatorcontrib>Perret, Bruno</creatorcontrib><creatorcontrib>Goulet, Etienne</creatorcontrib><creatorcontrib>Guerin, Laurence</creatorcontrib><creatorcontrib>Barbeau, Gérard</creatorcontrib><creatorcontrib>Picque, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudrit, Cédric</au><au>Perrot, Nathalie</au><au>Brousset, Jean Marie</au><au>Abbal, Philippe</au><au>Guillemin, Hervé</au><au>Perret, Bruno</au><au>Goulet, Etienne</au><au>Guerin, Laurence</au><au>Barbeau, Gérard</au><au>Picque, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic graphical model for describing the grape berry maturity</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>118</volume><spage>124</spage><epage>135</epage><pages>124-135</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Dynamic Bayesian networks for coupling heterogeneous data and expertise knowledge.•The modeling of grape berry maturity over the time tainted with uncertainty.•Prediction of sugar, acidity and anthocyanin concentrations over the maturity. Grape berry maturation depends on complex and coupled physiological and biochemical reactions which are climate dependant. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert prediction. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a robust mathematical model able (1) to capitalize the heterogeneous fragmented available knowledge including data and expertise by means of probabilistic graphical approaches; and (2) to predict sugar, acidity and anthocyanin concentrations over the maturity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2015.08.019</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4320-3345</orcidid><orcidid>https://orcid.org/0000-0003-3795-0838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2015-10, Vol.118, p.124-135
issn 0168-1699
1872-7107
language eng
recordid cdi_hal_primary_oai_HAL_hal_01535300v1
source Access via ScienceDirect (Elsevier)
subjects Agricultural sciences
Berries
Biochemistry
Climate
Dynamic Bayesian networks
Grapes
Knowledge integration
Life Sciences
Mathematical models
Modeling
Probabilistic methods
Probability theory
Sustainability
Uncertainty
Vegetal Biology
Wine
title A probabilistic graphical model for describing the grape berry maturity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20graphical%20model%20for%20describing%20the%20grape%20berry%20maturity&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Baudrit,%20C%C3%A9dric&rft.date=2015-10-01&rft.volume=118&rft.spage=124&rft.epage=135&rft.pages=124-135&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2015.08.019&rft_dat=%3Cproquest_hal_p%3E1770316795%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770316795&rft_id=info:pmid/&rft_els_id=S0168169915002458&rfr_iscdi=true