A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry

A wide variety of molecules have recently been detected in the Horsehead nebula photodissociation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules; and (ii) far-ultraviolet (FUV) photodesorption may explain the release int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-09, Vol.605, p.A88
Hauptverfasser: Le Gal, R., Herbst, E., Dufour, G., Gratier, P., Ruaud, M., Vidal, T. H. G., Wakelam, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A88
container_title Astronomy and astrophysics (Berlin)
container_volume 605
creator Le Gal, R.
Herbst, E.
Dufour, G.
Gratier, P.
Ruaud, M.
Vidal, T. H. G.
Wakelam, V.
description A wide variety of molecules have recently been detected in the Horsehead nebula photodissociation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules; and (ii) far-ultraviolet (FUV) photodesorption may explain the release into the gas phase of grain surface species. In order to tackle these specific problems and more generally in order to better constrain the chemical structure of these types of environments we present a study of the Horsehead nebula gas-grain chemistry. To do so we used the 1D astrochemical gas-grain code Nautilus with an appropriate physical structure computed with the Meudon PDR code and compared our modeled outcomes with published observations and with previously modeled results when available. The use of a large set of chemical reactions coupled with the time-dependent code Nautilus allows us to reproduce most of the observations well, including those of the first detections in a PDR of the organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH, which are mostly associated with hot cores. We also provide some abundance predictions for other molecules of interest. Understanding the chemistry behind the detection of these organic molecules is crucial to better constrain the environments these molecules can probe.
doi_str_mv 10.1051/0004-6361/201730980
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01533179v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055757435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-624dcb3979fb0c1cfd76d0dd66bf83ab31364c427288e7f75ce9cb19e6562d943</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwC7hE4sQhdB2_Em5tBRRUiYdAHC3HsWlKmhQ7AfrvcSj0tNrxN6P1IHSK4QIDwyMAoDEnHI8SwIJAlsIeGmBKkhgE5ftosCMO0ZH3y7AmOCUD9DaOavMV-bYrNlFjo3ZhIr0wq1KrKqiu023nzP_LrHHeLIwqginvKnX5q5a1rTpT61_szamyjn3nrNJ_USFmc4wOrKq8OfmbQ_RyffU8ncXz-5vb6Xgea8qhjXlCC52TTGQ2B421LQQvoCg4z21KVE4w4VTTRCRpaoQVTJtM5zgznPGkyCgZovNt7kJVcu3KlXIb2ahSzsZz2WuAGSFYZJ84sGdbdu2aj874Vi6bztXhPJkAY4IJSligyJbSrvHeGbuLxSD79mXfrey7lbv2gyveusLvzffOoty75IIIJlN4lZOnx7vXh-lEAvkBpGOFtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055757435</pqid></control><display><type>article</type><title>A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Le Gal, R. ; Herbst, E. ; Dufour, G. ; Gratier, P. ; Ruaud, M. ; Vidal, T. H. G. ; Wakelam, V.</creator><creatorcontrib>Le Gal, R. ; Herbst, E. ; Dufour, G. ; Gratier, P. ; Ruaud, M. ; Vidal, T. H. G. ; Wakelam, V.</creatorcontrib><description>A wide variety of molecules have recently been detected in the Horsehead nebula photodissociation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules; and (ii) far-ultraviolet (FUV) photodesorption may explain the release into the gas phase of grain surface species. In order to tackle these specific problems and more generally in order to better constrain the chemical structure of these types of environments we present a study of the Horsehead nebula gas-grain chemistry. To do so we used the 1D astrochemical gas-grain code Nautilus with an appropriate physical structure computed with the Meudon PDR code and compared our modeled outcomes with published observations and with previously modeled results when available. The use of a large set of chemical reactions coupled with the time-dependent code Nautilus allows us to reproduce most of the observations well, including those of the first detections in a PDR of the organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH, which are mostly associated with hot cores. We also provide some abundance predictions for other molecules of interest. Understanding the chemistry behind the detection of these organic molecules is crucial to better constrain the environments these molecules can probe.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201730980</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>astrochemistry ; Astrophysics ; Chemical reactions ; Chemistry ; Cosmology and Extra-Galactic Astrophysics ; ISM: abundances ; ISM: clouds ; ISM: individual objects: Horsehead ; ISM: molecules ; Molecular chains ; Nebulae ; Organic chemistry ; Photodissociation ; Sciences of the Universe ; submillimeter: ISM ; Surface chemistry ; Time dependence</subject><ispartof>Astronomy and astrophysics (Berlin), 2017-09, Vol.605, p.A88</ispartof><rights>Copyright EDP Sciences Sep 2017</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-624dcb3979fb0c1cfd76d0dd66bf83ab31364c427288e7f75ce9cb19e6562d943</citedby><cites>FETCH-LOGICAL-c460t-624dcb3979fb0c1cfd76d0dd66bf83ab31364c427288e7f75ce9cb19e6562d943</cites><orcidid>0000-0002-4649-2536 ; 0000-0002-6636-4304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01533179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Gal, R.</creatorcontrib><creatorcontrib>Herbst, E.</creatorcontrib><creatorcontrib>Dufour, G.</creatorcontrib><creatorcontrib>Gratier, P.</creatorcontrib><creatorcontrib>Ruaud, M.</creatorcontrib><creatorcontrib>Vidal, T. H. G.</creatorcontrib><creatorcontrib>Wakelam, V.</creatorcontrib><title>A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry</title><title>Astronomy and astrophysics (Berlin)</title><description>A wide variety of molecules have recently been detected in the Horsehead nebula photodissociation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules; and (ii) far-ultraviolet (FUV) photodesorption may explain the release into the gas phase of grain surface species. In order to tackle these specific problems and more generally in order to better constrain the chemical structure of these types of environments we present a study of the Horsehead nebula gas-grain chemistry. To do so we used the 1D astrochemical gas-grain code Nautilus with an appropriate physical structure computed with the Meudon PDR code and compared our modeled outcomes with published observations and with previously modeled results when available. The use of a large set of chemical reactions coupled with the time-dependent code Nautilus allows us to reproduce most of the observations well, including those of the first detections in a PDR of the organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH, which are mostly associated with hot cores. We also provide some abundance predictions for other molecules of interest. Understanding the chemistry behind the detection of these organic molecules is crucial to better constrain the environments these molecules can probe.</description><subject>astrochemistry</subject><subject>Astrophysics</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>ISM: abundances</subject><subject>ISM: clouds</subject><subject>ISM: individual objects: Horsehead</subject><subject>ISM: molecules</subject><subject>Molecular chains</subject><subject>Nebulae</subject><subject>Organic chemistry</subject><subject>Photodissociation</subject><subject>Sciences of the Universe</subject><subject>submillimeter: ISM</subject><subject>Surface chemistry</subject><subject>Time dependence</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqXwC7hE4sQhdB2_Em5tBRRUiYdAHC3HsWlKmhQ7AfrvcSj0tNrxN6P1IHSK4QIDwyMAoDEnHI8SwIJAlsIeGmBKkhgE5ftosCMO0ZH3y7AmOCUD9DaOavMV-bYrNlFjo3ZhIr0wq1KrKqiu023nzP_LrHHeLIwqginvKnX5q5a1rTpT61_szamyjn3nrNJ_USFmc4wOrKq8OfmbQ_RyffU8ncXz-5vb6Xgea8qhjXlCC52TTGQ2B421LQQvoCg4z21KVE4w4VTTRCRpaoQVTJtM5zgznPGkyCgZovNt7kJVcu3KlXIb2ahSzsZz2WuAGSFYZJ84sGdbdu2aj874Vi6bztXhPJkAY4IJSligyJbSrvHeGbuLxSD79mXfrey7lbv2gyveusLvzffOoty75IIIJlN4lZOnx7vXh-lEAvkBpGOFtA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Le Gal, R.</creator><creator>Herbst, E.</creator><creator>Dufour, G.</creator><creator>Gratier, P.</creator><creator>Ruaud, M.</creator><creator>Vidal, T. H. G.</creator><creator>Wakelam, V.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4649-2536</orcidid><orcidid>https://orcid.org/0000-0002-6636-4304</orcidid></search><sort><creationdate>20170901</creationdate><title>A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry</title><author>Le Gal, R. ; Herbst, E. ; Dufour, G. ; Gratier, P. ; Ruaud, M. ; Vidal, T. H. G. ; Wakelam, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-624dcb3979fb0c1cfd76d0dd66bf83ab31364c427288e7f75ce9cb19e6562d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>astrochemistry</topic><topic>Astrophysics</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>ISM: abundances</topic><topic>ISM: clouds</topic><topic>ISM: individual objects: Horsehead</topic><topic>ISM: molecules</topic><topic>Molecular chains</topic><topic>Nebulae</topic><topic>Organic chemistry</topic><topic>Photodissociation</topic><topic>Sciences of the Universe</topic><topic>submillimeter: ISM</topic><topic>Surface chemistry</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Gal, R.</creatorcontrib><creatorcontrib>Herbst, E.</creatorcontrib><creatorcontrib>Dufour, G.</creatorcontrib><creatorcontrib>Gratier, P.</creatorcontrib><creatorcontrib>Ruaud, M.</creatorcontrib><creatorcontrib>Vidal, T. H. G.</creatorcontrib><creatorcontrib>Wakelam, V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Gal, R.</au><au>Herbst, E.</au><au>Dufour, G.</au><au>Gratier, P.</au><au>Ruaud, M.</au><au>Vidal, T. H. G.</au><au>Wakelam, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>605</volume><spage>A88</spage><pages>A88-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>A wide variety of molecules have recently been detected in the Horsehead nebula photodissociation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules; and (ii) far-ultraviolet (FUV) photodesorption may explain the release into the gas phase of grain surface species. In order to tackle these specific problems and more generally in order to better constrain the chemical structure of these types of environments we present a study of the Horsehead nebula gas-grain chemistry. To do so we used the 1D astrochemical gas-grain code Nautilus with an appropriate physical structure computed with the Meudon PDR code and compared our modeled outcomes with published observations and with previously modeled results when available. The use of a large set of chemical reactions coupled with the time-dependent code Nautilus allows us to reproduce most of the observations well, including those of the first detections in a PDR of the organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH, which are mostly associated with hot cores. We also provide some abundance predictions for other molecules of interest. Understanding the chemistry behind the detection of these organic molecules is crucial to better constrain the environments these molecules can probe.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201730980</doi><orcidid>https://orcid.org/0000-0002-4649-2536</orcidid><orcidid>https://orcid.org/0000-0002-6636-4304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2017-09, Vol.605, p.A88
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_01533179v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects astrochemistry
Astrophysics
Chemical reactions
Chemistry
Cosmology and Extra-Galactic Astrophysics
ISM: abundances
ISM: clouds
ISM: individual objects: Horsehead
ISM: molecules
Molecular chains
Nebulae
Organic chemistry
Photodissociation
Sciences of the Universe
submillimeter: ISM
Surface chemistry
Time dependence
title A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20study%20of%20the%20chemical%20structure%20of%20the%20Horsehead%20nebula:%20the%20influence%20of%20grain-surface%20chemistry&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Le%20Gal,%20R.&rft.date=2017-09-01&rft.volume=605&rft.spage=A88&rft.pages=A88-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201730980&rft_dat=%3Cproquest_hal_p%3E2055757435%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055757435&rft_id=info:pmid/&rfr_iscdi=true