MBE growth and doping of AlGaP

•Adapted AlGaP growth conditions were clarified to obtain a smooth surface.•Incorporation and activation of p-(Be) and n-(Si) dopants in AlGaP strongly depends on the growth temperature.•Deeps traps in AlGaP layers grown at relatively low temperature are evidenced by deep level transient spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2017-05, Vol.466, p.6-15
Hauptverfasser: Tremblay, R., Burin, J.-P., Rohel, T., Gauthier, J.-P., Almosni, S., Quinci, T., Létoublon, A., Léger, Y., Le Corre, A., Bertru, N., Durand, O., Cornet, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 6
container_title Journal of crystal growth
container_volume 466
creator Tremblay, R.
Burin, J.-P.
Rohel, T.
Gauthier, J.-P.
Almosni, S.
Quinci, T.
Létoublon, A.
Léger, Y.
Le Corre, A.
Bertru, N.
Durand, O.
Cornet, C.
description •Adapted AlGaP growth conditions were clarified to obtain a smooth surface.•Incorporation and activation of p-(Be) and n-(Si) dopants in AlGaP strongly depends on the growth temperature.•Deeps traps in AlGaP layers grown at relatively low temperature are evidenced by deep level transient spectroscopy.•Deep traps are found to be correlated to the non-activation of dopants in AlGaP. In this work, we investigate the impact of growth parameters on surface morphology, doping levels and dopant activation in AlGaP epilayers grown on GaP substrate by solid source molecular beam epitaxy. Atomic Force Microscopy analysis reveals that a smooth surface can be obtained only in the [580–680]°C growth temperature range for a sufficiently large V/III ratio. From C(V), Hall measurements and SIMS analysis, it is shown that a reasonable activated p-doping (Be) value (typically 1018cm−3) can be reached if the growth temperature remains larger than 580°C. For the n-doping (Si), the situation is much more critical, as a growth temperature below 650°C leads to a strongly insulating layer. This dopant activation issue is related to the appearance of deep traps that are generated when growth temperature is not high enough, as evidenced by deep level transient spectroscopy and isothermal deep level transient spectroscopy. It is therefore suggested that electrically-driven devices using AlGaP epilayers have to be carefully designed in order to match both roughness and dopants activation constraints on growth temperatures and growth rates.
doi_str_mv 10.1016/j.jcrysgro.2017.02.011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01529569v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024817300854</els_id><sourcerecordid>1933257250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a0427936fe28a9be725eb14f1f5eaa207419b6edbaa6464a44f35919735b84bb3</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEEmPwFaZKnDi02PnTNjcGGhvSEBzgHKVturUazUi6oX17Ug24crEl6_ee7UfIBCFBwPS2TdrSHfzK2YQCZgnQBBBPyAjzjMUCgJ6SUag0Bsrzc3LhfQsQlAgjMnm-n0VB-tWvI91VUWW3TbeKbB1NN3P9eknOar3x5uqnj8n74-ztYREvX-ZPD9NlXLKM97EGTjPJ0trQXMvCZFSYAnmNtTBaU8g4yiI1VaF1ylOuOa-ZkCgzJoqcFwUbk5uj71pv1NY1H9odlNWNWkyXapgBCipFKvcY2Osju3X2c2d8r1q7c104T6FkjIqwHQKVHqnSWe-dqf9sEdSQm2rVb25qyE0BDVsG-7uj0IR_941xypeN6UpTNc6Uvaps85_FN5QGdgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933257250</pqid></control><display><type>article</type><title>MBE growth and doping of AlGaP</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tremblay, R. ; Burin, J.-P. ; Rohel, T. ; Gauthier, J.-P. ; Almosni, S. ; Quinci, T. ; Létoublon, A. ; Léger, Y. ; Le Corre, A. ; Bertru, N. ; Durand, O. ; Cornet, C.</creator><creatorcontrib>Tremblay, R. ; Burin, J.-P. ; Rohel, T. ; Gauthier, J.-P. ; Almosni, S. ; Quinci, T. ; Létoublon, A. ; Léger, Y. ; Le Corre, A. ; Bertru, N. ; Durand, O. ; Cornet, C.</creatorcontrib><description>•Adapted AlGaP growth conditions were clarified to obtain a smooth surface.•Incorporation and activation of p-(Be) and n-(Si) dopants in AlGaP strongly depends on the growth temperature.•Deeps traps in AlGaP layers grown at relatively low temperature are evidenced by deep level transient spectroscopy.•Deep traps are found to be correlated to the non-activation of dopants in AlGaP. In this work, we investigate the impact of growth parameters on surface morphology, doping levels and dopant activation in AlGaP epilayers grown on GaP substrate by solid source molecular beam epitaxy. Atomic Force Microscopy analysis reveals that a smooth surface can be obtained only in the [580–680]°C growth temperature range for a sufficiently large V/III ratio. From C(V), Hall measurements and SIMS analysis, it is shown that a reasonable activated p-doping (Be) value (typically 1018cm−3) can be reached if the growth temperature remains larger than 580°C. For the n-doping (Si), the situation is much more critical, as a growth temperature below 650°C leads to a strongly insulating layer. This dopant activation issue is related to the appearance of deep traps that are generated when growth temperature is not high enough, as evidenced by deep level transient spectroscopy and isothermal deep level transient spectroscopy. It is therefore suggested that electrically-driven devices using AlGaP epilayers have to be carefully designed in order to match both roughness and dopants activation constraints on growth temperatures and growth rates.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2017.02.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Doping ; A3. Molecular beam epitaxy ; Activation ; Atomic force microscopy ; B1. Phosphides ; B2. Semiconducting III-V materials ; Crystals ; Deep level transient spectroscopy ; Dopants ; Doping ; Engineering Sciences ; Epitaxial growth ; Molecular beam epitaxy ; Morphology ; Optics ; Photonic ; Semiconductor doping ; Temperature</subject><ispartof>Journal of crystal growth, 2017-05, Vol.466, p.6-15</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a0427936fe28a9be725eb14f1f5eaa207419b6edbaa6464a44f35919735b84bb3</citedby><cites>FETCH-LOGICAL-c374t-a0427936fe28a9be725eb14f1f5eaa207419b6edbaa6464a44f35919735b84bb3</cites><orcidid>0000-0002-4956-7767 ; 0000-0002-1363-7401 ; 0000-0001-8249-120X ; 0000-0003-0807-0049 ; 0000-0002-3655-5943 ; 0000-0002-4378-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2017.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01529569$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tremblay, R.</creatorcontrib><creatorcontrib>Burin, J.-P.</creatorcontrib><creatorcontrib>Rohel, T.</creatorcontrib><creatorcontrib>Gauthier, J.-P.</creatorcontrib><creatorcontrib>Almosni, S.</creatorcontrib><creatorcontrib>Quinci, T.</creatorcontrib><creatorcontrib>Létoublon, A.</creatorcontrib><creatorcontrib>Léger, Y.</creatorcontrib><creatorcontrib>Le Corre, A.</creatorcontrib><creatorcontrib>Bertru, N.</creatorcontrib><creatorcontrib>Durand, O.</creatorcontrib><creatorcontrib>Cornet, C.</creatorcontrib><title>MBE growth and doping of AlGaP</title><title>Journal of crystal growth</title><description>•Adapted AlGaP growth conditions were clarified to obtain a smooth surface.•Incorporation and activation of p-(Be) and n-(Si) dopants in AlGaP strongly depends on the growth temperature.•Deeps traps in AlGaP layers grown at relatively low temperature are evidenced by deep level transient spectroscopy.•Deep traps are found to be correlated to the non-activation of dopants in AlGaP. In this work, we investigate the impact of growth parameters on surface morphology, doping levels and dopant activation in AlGaP epilayers grown on GaP substrate by solid source molecular beam epitaxy. Atomic Force Microscopy analysis reveals that a smooth surface can be obtained only in the [580–680]°C growth temperature range for a sufficiently large V/III ratio. From C(V), Hall measurements and SIMS analysis, it is shown that a reasonable activated p-doping (Be) value (typically 1018cm−3) can be reached if the growth temperature remains larger than 580°C. For the n-doping (Si), the situation is much more critical, as a growth temperature below 650°C leads to a strongly insulating layer. This dopant activation issue is related to the appearance of deep traps that are generated when growth temperature is not high enough, as evidenced by deep level transient spectroscopy and isothermal deep level transient spectroscopy. It is therefore suggested that electrically-driven devices using AlGaP epilayers have to be carefully designed in order to match both roughness and dopants activation constraints on growth temperatures and growth rates.</description><subject>A1. Doping</subject><subject>A3. Molecular beam epitaxy</subject><subject>Activation</subject><subject>Atomic force microscopy</subject><subject>B1. Phosphides</subject><subject>B2. Semiconducting III-V materials</subject><subject>Crystals</subject><subject>Deep level transient spectroscopy</subject><subject>Dopants</subject><subject>Doping</subject><subject>Engineering Sciences</subject><subject>Epitaxial growth</subject><subject>Molecular beam epitaxy</subject><subject>Morphology</subject><subject>Optics</subject><subject>Photonic</subject><subject>Semiconductor doping</subject><subject>Temperature</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwzAMxSMEEmPwFaZKnDi02PnTNjcGGhvSEBzgHKVturUazUi6oX17Ug24crEl6_ee7UfIBCFBwPS2TdrSHfzK2YQCZgnQBBBPyAjzjMUCgJ6SUag0Bsrzc3LhfQsQlAgjMnm-n0VB-tWvI91VUWW3TbeKbB1NN3P9eknOar3x5uqnj8n74-ztYREvX-ZPD9NlXLKM97EGTjPJ0trQXMvCZFSYAnmNtTBaU8g4yiI1VaF1ylOuOa-ZkCgzJoqcFwUbk5uj71pv1NY1H9odlNWNWkyXapgBCipFKvcY2Osju3X2c2d8r1q7c104T6FkjIqwHQKVHqnSWe-dqf9sEdSQm2rVb25qyE0BDVsG-7uj0IR_941xypeN6UpTNc6Uvaps85_FN5QGdgQ</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Tremblay, R.</creator><creator>Burin, J.-P.</creator><creator>Rohel, T.</creator><creator>Gauthier, J.-P.</creator><creator>Almosni, S.</creator><creator>Quinci, T.</creator><creator>Létoublon, A.</creator><creator>Léger, Y.</creator><creator>Le Corre, A.</creator><creator>Bertru, N.</creator><creator>Durand, O.</creator><creator>Cornet, C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4956-7767</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0001-8249-120X</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></search><sort><creationdate>20170515</creationdate><title>MBE growth and doping of AlGaP</title><author>Tremblay, R. ; Burin, J.-P. ; Rohel, T. ; Gauthier, J.-P. ; Almosni, S. ; Quinci, T. ; Létoublon, A. ; Léger, Y. ; Le Corre, A. ; Bertru, N. ; Durand, O. ; Cornet, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a0427936fe28a9be725eb14f1f5eaa207419b6edbaa6464a44f35919735b84bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A1. Doping</topic><topic>A3. Molecular beam epitaxy</topic><topic>Activation</topic><topic>Atomic force microscopy</topic><topic>B1. Phosphides</topic><topic>B2. Semiconducting III-V materials</topic><topic>Crystals</topic><topic>Deep level transient spectroscopy</topic><topic>Dopants</topic><topic>Doping</topic><topic>Engineering Sciences</topic><topic>Epitaxial growth</topic><topic>Molecular beam epitaxy</topic><topic>Morphology</topic><topic>Optics</topic><topic>Photonic</topic><topic>Semiconductor doping</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tremblay, R.</creatorcontrib><creatorcontrib>Burin, J.-P.</creatorcontrib><creatorcontrib>Rohel, T.</creatorcontrib><creatorcontrib>Gauthier, J.-P.</creatorcontrib><creatorcontrib>Almosni, S.</creatorcontrib><creatorcontrib>Quinci, T.</creatorcontrib><creatorcontrib>Létoublon, A.</creatorcontrib><creatorcontrib>Léger, Y.</creatorcontrib><creatorcontrib>Le Corre, A.</creatorcontrib><creatorcontrib>Bertru, N.</creatorcontrib><creatorcontrib>Durand, O.</creatorcontrib><creatorcontrib>Cornet, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tremblay, R.</au><au>Burin, J.-P.</au><au>Rohel, T.</au><au>Gauthier, J.-P.</au><au>Almosni, S.</au><au>Quinci, T.</au><au>Létoublon, A.</au><au>Léger, Y.</au><au>Le Corre, A.</au><au>Bertru, N.</au><au>Durand, O.</au><au>Cornet, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MBE growth and doping of AlGaP</atitle><jtitle>Journal of crystal growth</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>466</volume><spage>6</spage><epage>15</epage><pages>6-15</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•Adapted AlGaP growth conditions were clarified to obtain a smooth surface.•Incorporation and activation of p-(Be) and n-(Si) dopants in AlGaP strongly depends on the growth temperature.•Deeps traps in AlGaP layers grown at relatively low temperature are evidenced by deep level transient spectroscopy.•Deep traps are found to be correlated to the non-activation of dopants in AlGaP. In this work, we investigate the impact of growth parameters on surface morphology, doping levels and dopant activation in AlGaP epilayers grown on GaP substrate by solid source molecular beam epitaxy. Atomic Force Microscopy analysis reveals that a smooth surface can be obtained only in the [580–680]°C growth temperature range for a sufficiently large V/III ratio. From C(V), Hall measurements and SIMS analysis, it is shown that a reasonable activated p-doping (Be) value (typically 1018cm−3) can be reached if the growth temperature remains larger than 580°C. For the n-doping (Si), the situation is much more critical, as a growth temperature below 650°C leads to a strongly insulating layer. This dopant activation issue is related to the appearance of deep traps that are generated when growth temperature is not high enough, as evidenced by deep level transient spectroscopy and isothermal deep level transient spectroscopy. It is therefore suggested that electrically-driven devices using AlGaP epilayers have to be carefully designed in order to match both roughness and dopants activation constraints on growth temperatures and growth rates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2017.02.011</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4956-7767</orcidid><orcidid>https://orcid.org/0000-0002-1363-7401</orcidid><orcidid>https://orcid.org/0000-0001-8249-120X</orcidid><orcidid>https://orcid.org/0000-0003-0807-0049</orcidid><orcidid>https://orcid.org/0000-0002-3655-5943</orcidid><orcidid>https://orcid.org/0000-0002-4378-260X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2017-05, Vol.466, p.6-15
issn 0022-0248
1873-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_01529569v1
source ScienceDirect Journals (5 years ago - present)
subjects A1. Doping
A3. Molecular beam epitaxy
Activation
Atomic force microscopy
B1. Phosphides
B2. Semiconducting III-V materials
Crystals
Deep level transient spectroscopy
Dopants
Doping
Engineering Sciences
Epitaxial growth
Molecular beam epitaxy
Morphology
Optics
Photonic
Semiconductor doping
Temperature
title MBE growth and doping of AlGaP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MBE%20growth%20and%20doping%20of%20AlGaP&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Tremblay,%20R.&rft.date=2017-05-15&rft.volume=466&rft.spage=6&rft.epage=15&rft.pages=6-15&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2017.02.011&rft_dat=%3Cproquest_hal_p%3E1933257250%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933257250&rft_id=info:pmid/&rft_els_id=S0022024817300854&rfr_iscdi=true