Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection
Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based...
Gespeichert in:
Veröffentlicht in: | Neural networks 2008-05, Vol.21 (4), p.628-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 4 |
container_start_page | 628 |
container_title | Neural networks |
container_volume | 21 |
creator | Girard, B. Tabareau, N. Pham, Q.C. Berthoz, A. Slotine, J.-J. |
description | Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule. |
doi_str_mv | 10.1016/j.neunet.2008.03.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01524676v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608008000671</els_id><sourcerecordid>19368831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</originalsourceid><addsrcrecordid>eNqFkc2OFCEUhStG4_SMvoExrExcVHsp6gdcmHQmjmPSiRuNSwLUrW46VTACNUkvfHcpq6M7XUHgOwfuOUXxisKWAm3fnbYOZ4dpWwHwLbAtgHhSbCjvRFl1vHpabIALVrbA4aq4jvEEAC2v2fPiivJaNHVVbYqf348YkGSr4KOx6AwS5XrSn52arCHxHBNOJB3RhzOZEBNRc_LOT36OJHjtkzXxPdkR410KyiTrDkSrqEZyUO4wWkUm3-NIBh_Icu0diTji792L4tmgxogvL-tN8e3u49fb-3L_5dPn292-NA3rUmlEP2hQ2HRadLyjBiqgSjUd67XWAmktDGhWM66FQTOYdsgDtrzPIk6RsZvi7ep7VKN8CHZS4Sy9svJ-t5fLGdCmqtuufaSZfbOyD8H_mDEmOdlocByVwzyzbEVFG6Div2BGWs7Z4livoMkZx4DDny9QkEuX8iTXLuXSpQQmc5dZ9vriP-sJ-7-iS3kZ-LACmKN7tBjkpcHehpyv7L399wu_ALUFtEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19368831</pqid></control><display><type>article</type><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</creator><creatorcontrib>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</creatorcontrib><description>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2008.03.009</identifier><identifier>PMID: 18495422</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action selection ; Algorithms ; Animals ; Artificial Intelligence ; Autonomous robotics ; Basal ganglia ; Basal Ganglia - physiology ; Cognitive science ; Computational model ; Computer Science ; Contraction analysis ; Decision Making - physiology ; Humans ; Movement - physiology ; Neural and Evolutionary Computing ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neuroscience ; Neurosciences - methods ; Neurosciences - trends ; Nonlinear Dynamics ; Robotics ; Robotics - methods ; Robotics - trends</subject><ispartof>Neural networks, 2008-05, Vol.21 (4), p.628-641</ispartof><rights>2008 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</citedby><cites>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</cites><orcidid>0000-0002-8117-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608008000671$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01524676$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girard, B.</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Pham, Q.C.</creatorcontrib><creatorcontrib>Berthoz, A.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</description><subject>Action selection</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Autonomous robotics</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Cognitive science</subject><subject>Computational model</subject><subject>Computer Science</subject><subject>Contraction analysis</subject><subject>Decision Making - physiology</subject><subject>Humans</subject><subject>Movement - physiology</subject><subject>Neural and Evolutionary Computing</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neuroscience</subject><subject>Neurosciences - methods</subject><subject>Neurosciences - trends</subject><subject>Nonlinear Dynamics</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Robotics - trends</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2OFCEUhStG4_SMvoExrExcVHsp6gdcmHQmjmPSiRuNSwLUrW46VTACNUkvfHcpq6M7XUHgOwfuOUXxisKWAm3fnbYOZ4dpWwHwLbAtgHhSbCjvRFl1vHpabIALVrbA4aq4jvEEAC2v2fPiivJaNHVVbYqf348YkGSr4KOx6AwS5XrSn52arCHxHBNOJB3RhzOZEBNRc_LOT36OJHjtkzXxPdkR410KyiTrDkSrqEZyUO4wWkUm3-NIBh_Icu0diTji792L4tmgxogvL-tN8e3u49fb-3L_5dPn292-NA3rUmlEP2hQ2HRadLyjBiqgSjUd67XWAmktDGhWM66FQTOYdsgDtrzPIk6RsZvi7ep7VKN8CHZS4Sy9svJ-t5fLGdCmqtuufaSZfbOyD8H_mDEmOdlocByVwzyzbEVFG6Div2BGWs7Z4livoMkZx4DDny9QkEuX8iTXLuXSpQQmc5dZ9vriP-sJ-7-iS3kZ-LACmKN7tBjkpcHehpyv7L399wu_ALUFtEQ</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Girard, B.</creator><creator>Tabareau, N.</creator><creator>Pham, Q.C.</creator><creator>Berthoz, A.</creator><creator>Slotine, J.-J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8117-7064</orcidid></search><sort><creationdate>20080501</creationdate><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><author>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action selection</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Autonomous robotics</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Cognitive science</topic><topic>Computational model</topic><topic>Computer Science</topic><topic>Contraction analysis</topic><topic>Decision Making - physiology</topic><topic>Humans</topic><topic>Movement - physiology</topic><topic>Neural and Evolutionary Computing</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neuroscience</topic><topic>Neurosciences - methods</topic><topic>Neurosciences - trends</topic><topic>Nonlinear Dynamics</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Robotics - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girard, B.</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Pham, Q.C.</creatorcontrib><creatorcontrib>Berthoz, A.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girard, B.</au><au>Tabareau, N.</au><au>Pham, Q.C.</au><au>Berthoz, A.</au><au>Slotine, J.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>21</volume><issue>4</issue><spage>628</spage><epage>641</epage><pages>628-641</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18495422</pmid><doi>10.1016/j.neunet.2008.03.009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8117-7064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2008-05, Vol.21 (4), p.628-641 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01524676v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action selection Algorithms Animals Artificial Intelligence Autonomous robotics Basal ganglia Basal Ganglia - physiology Cognitive science Computational model Computer Science Contraction analysis Decision Making - physiology Humans Movement - physiology Neural and Evolutionary Computing Neural Networks (Computer) Neural Pathways - physiology Neuroscience Neurosciences - methods Neurosciences - trends Nonlinear Dynamics Robotics Robotics - methods Robotics - trends |
title | Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20neuroscience%20and%20dynamic%20system%20theory%20meet%20autonomous%20robotics:%20A%20contracting%20basal%20ganglia%20model%20for%20action%20selection&rft.jtitle=Neural%20networks&rft.au=Girard,%20B.&rft.date=2008-05-01&rft.volume=21&rft.issue=4&rft.spage=628&rft.epage=641&rft.pages=628-641&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2008.03.009&rft_dat=%3Cproquest_hal_p%3E19368831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19368831&rft_id=info:pmid/18495422&rft_els_id=S0893608008000671&rfr_iscdi=true |