Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection

Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2008-05, Vol.21 (4), p.628-641
Hauptverfasser: Girard, B., Tabareau, N., Pham, Q.C., Berthoz, A., Slotine, J.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 628
container_title Neural networks
container_volume 21
creator Girard, B.
Tabareau, N.
Pham, Q.C.
Berthoz, A.
Slotine, J.-J.
description Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.
doi_str_mv 10.1016/j.neunet.2008.03.009
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01524676v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608008000671</els_id><sourcerecordid>19368831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</originalsourceid><addsrcrecordid>eNqFkc2OFCEUhStG4_SMvoExrExcVHsp6gdcmHQmjmPSiRuNSwLUrW46VTACNUkvfHcpq6M7XUHgOwfuOUXxisKWAm3fnbYOZ4dpWwHwLbAtgHhSbCjvRFl1vHpabIALVrbA4aq4jvEEAC2v2fPiivJaNHVVbYqf348YkGSr4KOx6AwS5XrSn52arCHxHBNOJB3RhzOZEBNRc_LOT36OJHjtkzXxPdkR410KyiTrDkSrqEZyUO4wWkUm3-NIBh_Icu0diTji792L4tmgxogvL-tN8e3u49fb-3L_5dPn292-NA3rUmlEP2hQ2HRadLyjBiqgSjUd67XWAmktDGhWM66FQTOYdsgDtrzPIk6RsZvi7ep7VKN8CHZS4Sy9svJ-t5fLGdCmqtuufaSZfbOyD8H_mDEmOdlocByVwzyzbEVFG6Div2BGWs7Z4livoMkZx4DDny9QkEuX8iTXLuXSpQQmc5dZ9vriP-sJ-7-iS3kZ-LACmKN7tBjkpcHehpyv7L399wu_ALUFtEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19368831</pqid></control><display><type>article</type><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</creator><creatorcontrib>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</creatorcontrib><description>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2008.03.009</identifier><identifier>PMID: 18495422</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action selection ; Algorithms ; Animals ; Artificial Intelligence ; Autonomous robotics ; Basal ganglia ; Basal Ganglia - physiology ; Cognitive science ; Computational model ; Computer Science ; Contraction analysis ; Decision Making - physiology ; Humans ; Movement - physiology ; Neural and Evolutionary Computing ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neuroscience ; Neurosciences - methods ; Neurosciences - trends ; Nonlinear Dynamics ; Robotics ; Robotics - methods ; Robotics - trends</subject><ispartof>Neural networks, 2008-05, Vol.21 (4), p.628-641</ispartof><rights>2008 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</citedby><cites>FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</cites><orcidid>0000-0002-8117-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608008000671$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18495422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01524676$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girard, B.</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Pham, Q.C.</creatorcontrib><creatorcontrib>Berthoz, A.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</description><subject>Action selection</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Autonomous robotics</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Cognitive science</subject><subject>Computational model</subject><subject>Computer Science</subject><subject>Contraction analysis</subject><subject>Decision Making - physiology</subject><subject>Humans</subject><subject>Movement - physiology</subject><subject>Neural and Evolutionary Computing</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neuroscience</subject><subject>Neurosciences - methods</subject><subject>Neurosciences - trends</subject><subject>Nonlinear Dynamics</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Robotics - trends</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2OFCEUhStG4_SMvoExrExcVHsp6gdcmHQmjmPSiRuNSwLUrW46VTACNUkvfHcpq6M7XUHgOwfuOUXxisKWAm3fnbYOZ4dpWwHwLbAtgHhSbCjvRFl1vHpabIALVrbA4aq4jvEEAC2v2fPiivJaNHVVbYqf348YkGSr4KOx6AwS5XrSn52arCHxHBNOJB3RhzOZEBNRc_LOT36OJHjtkzXxPdkR410KyiTrDkSrqEZyUO4wWkUm3-NIBh_Icu0diTji792L4tmgxogvL-tN8e3u49fb-3L_5dPn292-NA3rUmlEP2hQ2HRadLyjBiqgSjUd67XWAmktDGhWM66FQTOYdsgDtrzPIk6RsZvi7ep7VKN8CHZS4Sy9svJ-t5fLGdCmqtuufaSZfbOyD8H_mDEmOdlocByVwzyzbEVFG6Div2BGWs7Z4livoMkZx4DDny9QkEuX8iTXLuXSpQQmc5dZ9vriP-sJ-7-iS3kZ-LACmKN7tBjkpcHehpyv7L399wu_ALUFtEQ</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Girard, B.</creator><creator>Tabareau, N.</creator><creator>Pham, Q.C.</creator><creator>Berthoz, A.</creator><creator>Slotine, J.-J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8117-7064</orcidid></search><sort><creationdate>20080501</creationdate><title>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</title><author>Girard, B. ; Tabareau, N. ; Pham, Q.C. ; Berthoz, A. ; Slotine, J.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c9dfb0ae57b97871c0201aa573dbbb9e149c0b3438b9cecfc6f84968db0a81e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action selection</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Autonomous robotics</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Cognitive science</topic><topic>Computational model</topic><topic>Computer Science</topic><topic>Contraction analysis</topic><topic>Decision Making - physiology</topic><topic>Humans</topic><topic>Movement - physiology</topic><topic>Neural and Evolutionary Computing</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neuroscience</topic><topic>Neurosciences - methods</topic><topic>Neurosciences - trends</topic><topic>Nonlinear Dynamics</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Robotics - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girard, B.</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Pham, Q.C.</creatorcontrib><creatorcontrib>Berthoz, A.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girard, B.</au><au>Tabareau, N.</au><au>Pham, Q.C.</au><au>Berthoz, A.</au><au>Slotine, J.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>21</volume><issue>4</issue><spage>628</spage><epage>641</epage><pages>628-641</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18495422</pmid><doi>10.1016/j.neunet.2008.03.009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8117-7064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2008-05, Vol.21 (4), p.628-641
issn 0893-6080
1879-2782
language eng
recordid cdi_hal_primary_oai_HAL_hal_01524676v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action selection
Algorithms
Animals
Artificial Intelligence
Autonomous robotics
Basal ganglia
Basal Ganglia - physiology
Cognitive science
Computational model
Computer Science
Contraction analysis
Decision Making - physiology
Humans
Movement - physiology
Neural and Evolutionary Computing
Neural Networks (Computer)
Neural Pathways - physiology
Neuroscience
Neurosciences - methods
Neurosciences - trends
Nonlinear Dynamics
Robotics
Robotics - methods
Robotics - trends
title Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20neuroscience%20and%20dynamic%20system%20theory%20meet%20autonomous%20robotics:%20A%20contracting%20basal%20ganglia%20model%20for%20action%20selection&rft.jtitle=Neural%20networks&rft.au=Girard,%20B.&rft.date=2008-05-01&rft.volume=21&rft.issue=4&rft.spage=628&rft.epage=641&rft.pages=628-641&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2008.03.009&rft_dat=%3Cproquest_hal_p%3E19368831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19368831&rft_id=info:pmid/18495422&rft_els_id=S0893608008000671&rfr_iscdi=true