Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method

•We identify the plastic properties of porous plasma-sprayed coatings by means of macro-indentation and a Levenberg–Marquardt optimization.•The plastic properties can be represented by the Gurson–Tvergaard plasticity criterion.•The geometry of the residual indent retrieved after indentation suffices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of materials 2016-07, Vol.98, p.22-35
Hauptverfasser: Kind, N., Berthel, B., Fouvry, S., Poupon, C., Jaubert, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 22
container_title Mechanics of materials
container_volume 98
creator Kind, N.
Berthel, B.
Fouvry, S.
Poupon, C.
Jaubert, O.
description •We identify the plastic properties of porous plasma-sprayed coatings by means of macro-indentation and a Levenberg–Marquardt optimization.•The plastic properties can be represented by the Gurson–Tvergaard plasticity criterion.•The geometry of the residual indent retrieved after indentation suffices to extract plastic properties.•We could identify 5 material parameters that take on realistic values where σy0=1620MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%. Plasma-sprayed coatings are widely used for thermal protection and wear stability of structural components. These coatings feature an anisotropic porous structure as a result of the thermal spraying process. Although current literature provides methods for the identification of elastic properties of these materials, to our knowledge little research is dedicated to describing their plastic behavior, especially when these coatings are subjected to macro-scale contacts encountered in industrial applications. In this work we present a novel inverse method for the identification of plastic properties of thick plasma-sprayed coatings by means of macro-indentation and finite element simulations coupled to a Levenberg–Marquardt optimization. This optimization aims to fit numerically generated residual indentation profiles to the experimentally obtained ones. For the description of the coatings’ plastic behavior we made use of the Gurson–Tvergaard plasticity criterion coupled to a linear isotropic work hardening of the matrix. This criterion is appropriate for ductile porous solids as it takes into account the hydrostatic pressure, and it is readily implementable in commercial finite element software. The constitutive parameters to be identified include the yield strength σy0 and the work hardening coefficient K of the solid matrix as well as two dimensionless fitting parameters q1 and q2 and the void fraction f. For the given plasma-sprayed coating we could show that the proposed method is capable of identifying these parameters after as little as three iterations where σy0=1624MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%.
doi_str_mv 10.1016/j.mechmat.2016.03.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01523811v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016766361630014X</els_id><sourcerecordid>1825476923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a29511094ac41b978bcc7fd3953c6b7e000d95a009d21965ab61f92b674436f3</originalsourceid><addsrcrecordid>eNqFkcGOFCEURYnRxHb0E0xY6qJKKApo3JjJxHEmaaOL2RMKXk3TqYIaoDuZnX6Df-iXDJ2auHVBCI9zb3LfReg9JS0lVHw6tDPY_WxK29VnS1hLCHuBNnQru0bKnr1Em_ohGyGYeI3e5HwghHDF5Qb9_jmZPJsmL8k8gsM2muLDff6Mbx2E4kdv6yAGHEe8VLR4i5cUF0jFQ8bHXGE8G5ti48NZsdImuHqwDydIGfAOThAGSPd_f_35btLD0SRX8AxlH91b9Go0U4Z3z_cFurv-end10-x-fLu9utw1tu9YaUynOKVE9cb2dFByO1grR8cUZ1YMEmoip7ghRLmOKsHNIOioukHIvmdiZBfo42q7N5Nekp9NetTReH1zudPnGaG8Y1tKT7SyH1a2Jn04Qi569tnCNJkA8Zg13Xa8l0J1rKJ8ResGck4w_vOmRJ_b0Qf93I4-t6MJ07Wdqvuy6qBGPnlIOlsPwYLzCWzRLvr_ODwB6Tidug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825476923</pqid></control><display><type>article</type><title>Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method</title><source>Elsevier ScienceDirect Journals</source><creator>Kind, N. ; Berthel, B. ; Fouvry, S. ; Poupon, C. ; Jaubert, O.</creator><creatorcontrib>Kind, N. ; Berthel, B. ; Fouvry, S. ; Poupon, C. ; Jaubert, O.</creatorcontrib><description>•We identify the plastic properties of porous plasma-sprayed coatings by means of macro-indentation and a Levenberg–Marquardt optimization.•The plastic properties can be represented by the Gurson–Tvergaard plasticity criterion.•The geometry of the residual indent retrieved after indentation suffices to extract plastic properties.•We could identify 5 material parameters that take on realistic values where σy0=1620MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%. Plasma-sprayed coatings are widely used for thermal protection and wear stability of structural components. These coatings feature an anisotropic porous structure as a result of the thermal spraying process. Although current literature provides methods for the identification of elastic properties of these materials, to our knowledge little research is dedicated to describing their plastic behavior, especially when these coatings are subjected to macro-scale contacts encountered in industrial applications. In this work we present a novel inverse method for the identification of plastic properties of thick plasma-sprayed coatings by means of macro-indentation and finite element simulations coupled to a Levenberg–Marquardt optimization. This optimization aims to fit numerically generated residual indentation profiles to the experimentally obtained ones. For the description of the coatings’ plastic behavior we made use of the Gurson–Tvergaard plasticity criterion coupled to a linear isotropic work hardening of the matrix. This criterion is appropriate for ductile porous solids as it takes into account the hydrostatic pressure, and it is readily implementable in commercial finite element software. The constitutive parameters to be identified include the yield strength σy0 and the work hardening coefficient K of the solid matrix as well as two dimensionless fitting parameters q1 and q2 and the void fraction f. For the given plasma-sprayed coating we could show that the proposed method is capable of identifying these parameters after as little as three iterations where σy0=1624MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%.</description><identifier>ISSN: 0167-6636</identifier><identifier>EISSN: 1872-7743</identifier><identifier>DOI: 10.1016/j.mechmat.2016.03.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coatings ; Criteria ; Finite element method ; Gurson–Tvergaard plasticity ; Inverse identification ; Joining ; Levenberg–Marqaurdt method ; Macro-indentation ; Mathematical analysis ; Mathematical models ; Mechanics ; Mechanics of materials ; Physics ; Plasma-sprayed coatings ; Plastic properties ; Porous solids ; Work hardening</subject><ispartof>Mechanics of materials, 2016-07, Vol.98, p.22-35</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a29511094ac41b978bcc7fd3953c6b7e000d95a009d21965ab61f92b674436f3</citedby><cites>FETCH-LOGICAL-c423t-a29511094ac41b978bcc7fd3953c6b7e000d95a009d21965ab61f92b674436f3</cites><orcidid>0000-0002-9703-456X ; 0000-0002-8850-0645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016766361630014X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01523811$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kind, N.</creatorcontrib><creatorcontrib>Berthel, B.</creatorcontrib><creatorcontrib>Fouvry, S.</creatorcontrib><creatorcontrib>Poupon, C.</creatorcontrib><creatorcontrib>Jaubert, O.</creatorcontrib><title>Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method</title><title>Mechanics of materials</title><description>•We identify the plastic properties of porous plasma-sprayed coatings by means of macro-indentation and a Levenberg–Marquardt optimization.•The plastic properties can be represented by the Gurson–Tvergaard plasticity criterion.•The geometry of the residual indent retrieved after indentation suffices to extract plastic properties.•We could identify 5 material parameters that take on realistic values where σy0=1620MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%. Plasma-sprayed coatings are widely used for thermal protection and wear stability of structural components. These coatings feature an anisotropic porous structure as a result of the thermal spraying process. Although current literature provides methods for the identification of elastic properties of these materials, to our knowledge little research is dedicated to describing their plastic behavior, especially when these coatings are subjected to macro-scale contacts encountered in industrial applications. In this work we present a novel inverse method for the identification of plastic properties of thick plasma-sprayed coatings by means of macro-indentation and finite element simulations coupled to a Levenberg–Marquardt optimization. This optimization aims to fit numerically generated residual indentation profiles to the experimentally obtained ones. For the description of the coatings’ plastic behavior we made use of the Gurson–Tvergaard plasticity criterion coupled to a linear isotropic work hardening of the matrix. This criterion is appropriate for ductile porous solids as it takes into account the hydrostatic pressure, and it is readily implementable in commercial finite element software. The constitutive parameters to be identified include the yield strength σy0 and the work hardening coefficient K of the solid matrix as well as two dimensionless fitting parameters q1 and q2 and the void fraction f. For the given plasma-sprayed coating we could show that the proposed method is capable of identifying these parameters after as little as three iterations where σy0=1624MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%.</description><subject>Coatings</subject><subject>Criteria</subject><subject>Finite element method</subject><subject>Gurson–Tvergaard plasticity</subject><subject>Inverse identification</subject><subject>Joining</subject><subject>Levenberg–Marqaurdt method</subject><subject>Macro-indentation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Plasma-sprayed coatings</subject><subject>Plastic properties</subject><subject>Porous solids</subject><subject>Work hardening</subject><issn>0167-6636</issn><issn>1872-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcGOFCEURYnRxHb0E0xY6qJKKApo3JjJxHEmaaOL2RMKXk3TqYIaoDuZnX6Df-iXDJ2auHVBCI9zb3LfReg9JS0lVHw6tDPY_WxK29VnS1hLCHuBNnQru0bKnr1Em_ohGyGYeI3e5HwghHDF5Qb9_jmZPJsmL8k8gsM2muLDff6Mbx2E4kdv6yAGHEe8VLR4i5cUF0jFQ8bHXGE8G5ti48NZsdImuHqwDydIGfAOThAGSPd_f_35btLD0SRX8AxlH91b9Go0U4Z3z_cFurv-end10-x-fLu9utw1tu9YaUynOKVE9cb2dFByO1grR8cUZ1YMEmoip7ghRLmOKsHNIOioukHIvmdiZBfo42q7N5Nekp9NetTReH1zudPnGaG8Y1tKT7SyH1a2Jn04Qi569tnCNJkA8Zg13Xa8l0J1rKJ8ResGck4w_vOmRJ_b0Qf93I4-t6MJ07Wdqvuy6qBGPnlIOlsPwYLzCWzRLvr_ODwB6Tidug</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Kind, N.</creator><creator>Berthel, B.</creator><creator>Fouvry, S.</creator><creator>Poupon, C.</creator><creator>Jaubert, O.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9703-456X</orcidid><orcidid>https://orcid.org/0000-0002-8850-0645</orcidid></search><sort><creationdate>20160701</creationdate><title>Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method</title><author>Kind, N. ; Berthel, B. ; Fouvry, S. ; Poupon, C. ; Jaubert, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a29511094ac41b978bcc7fd3953c6b7e000d95a009d21965ab61f92b674436f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coatings</topic><topic>Criteria</topic><topic>Finite element method</topic><topic>Gurson–Tvergaard plasticity</topic><topic>Inverse identification</topic><topic>Joining</topic><topic>Levenberg–Marqaurdt method</topic><topic>Macro-indentation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Plasma-sprayed coatings</topic><topic>Plastic properties</topic><topic>Porous solids</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kind, N.</creatorcontrib><creatorcontrib>Berthel, B.</creatorcontrib><creatorcontrib>Fouvry, S.</creatorcontrib><creatorcontrib>Poupon, C.</creatorcontrib><creatorcontrib>Jaubert, O.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mechanics of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kind, N.</au><au>Berthel, B.</au><au>Fouvry, S.</au><au>Poupon, C.</au><au>Jaubert, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method</atitle><jtitle>Mechanics of materials</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>98</volume><spage>22</spage><epage>35</epage><pages>22-35</pages><issn>0167-6636</issn><eissn>1872-7743</eissn><abstract>•We identify the plastic properties of porous plasma-sprayed coatings by means of macro-indentation and a Levenberg–Marquardt optimization.•The plastic properties can be represented by the Gurson–Tvergaard plasticity criterion.•The geometry of the residual indent retrieved after indentation suffices to extract plastic properties.•We could identify 5 material parameters that take on realistic values where σy0=1620MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%. Plasma-sprayed coatings are widely used for thermal protection and wear stability of structural components. These coatings feature an anisotropic porous structure as a result of the thermal spraying process. Although current literature provides methods for the identification of elastic properties of these materials, to our knowledge little research is dedicated to describing their plastic behavior, especially when these coatings are subjected to macro-scale contacts encountered in industrial applications. In this work we present a novel inverse method for the identification of plastic properties of thick plasma-sprayed coatings by means of macro-indentation and finite element simulations coupled to a Levenberg–Marquardt optimization. This optimization aims to fit numerically generated residual indentation profiles to the experimentally obtained ones. For the description of the coatings’ plastic behavior we made use of the Gurson–Tvergaard plasticity criterion coupled to a linear isotropic work hardening of the matrix. This criterion is appropriate for ductile porous solids as it takes into account the hydrostatic pressure, and it is readily implementable in commercial finite element software. The constitutive parameters to be identified include the yield strength σy0 and the work hardening coefficient K of the solid matrix as well as two dimensionless fitting parameters q1 and q2 and the void fraction f. For the given plasma-sprayed coating we could show that the proposed method is capable of identifying these parameters after as little as three iterations where σy0=1624MPa, K=33,340MPa, q1=3.29, q2=4.60 and f=4.2%.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mechmat.2016.03.003</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9703-456X</orcidid><orcidid>https://orcid.org/0000-0002-8850-0645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6636
ispartof Mechanics of materials, 2016-07, Vol.98, p.22-35
issn 0167-6636
1872-7743
language eng
recordid cdi_hal_primary_oai_HAL_hal_01523811v1
source Elsevier ScienceDirect Journals
subjects Coatings
Criteria
Finite element method
Gurson–Tvergaard plasticity
Inverse identification
Joining
Levenberg–Marqaurdt method
Macro-indentation
Mathematical analysis
Mathematical models
Mechanics
Mechanics of materials
Physics
Plasma-sprayed coatings
Plastic properties
Porous solids
Work hardening
title Plasma-sprayed coatings: Identification of plastic properties using macro-indentation and an inverse Levenberg–Marquardt method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-sprayed%20coatings:%20Identification%20of%20plastic%20properties%20using%20macro-indentation%20and%20an%20inverse%20Levenberg%E2%80%93Marquardt%20method&rft.jtitle=Mechanics%20of%20materials&rft.au=Kind,%20N.&rft.date=2016-07-01&rft.volume=98&rft.spage=22&rft.epage=35&rft.pages=22-35&rft.issn=0167-6636&rft.eissn=1872-7743&rft_id=info:doi/10.1016/j.mechmat.2016.03.003&rft_dat=%3Cproquest_hal_p%3E1825476923%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825476923&rft_id=info:pmid/&rft_els_id=S016766361630014X&rfr_iscdi=true