THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS)
The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predict...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2017-03, Vol.98 (3), p.517-538 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 3 |
container_start_page | 517 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 98 |
creator | Kulessa, A. S. Barrios, A. Claverie, J. Garrett, S. Haackck, T. Hackcker, J. M. Hansen, H. J. Horgan, K. Hurtaud, Y. Lemon, C. Marshall, R. McGregor, J. McMillan, M. Périard, C. Pourret, V. Price, J. Rogers, L. T. Short, C. Veasey, M. Wiss, V. R. |
description | The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).
Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results. |
doi_str_mv | 10.1175/BAMS-D-14-00284.1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01522913v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491575438</galeid><jstor_id>26243698</jstor_id><sourcerecordid>A491575438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-232bd39860817205ebf85ab42d731f0b702c4d02d8b38d0621b998e3284903703</originalsourceid><addsrcrecordid>eNpFkM9OwkAQxjdGExF9AA8mTbzIoTCzu-1ujysgkKAQWg6eNv2rJUBxCybefAff0CextQZPk5n5zXwzHyHXCF1E4fTu1aNvD2zkNgCVvIsnpIUOBRu4EKekBQCsaoE4JxdluapTJrFFesF4aAWL2XzSV1NLTRbfn1_-UFnzqqRGKpjMniw_WA6erbtAzf3OJTnLwnWZXv3FNlk-DIP-2J7ORvUKO-YAe5syGiXMky5IFBScNMqkE0acJoJhBpEAGvMEaCIjJhNwKUaeJ1NWne4BE8DapNPsfQ3XemfyTWg-dBHmeqymuq5B9R31kL1jxd427M4Ub4e03OtVcTDb6jyNHuWukJKxf-olXKc632bF3oTxJi9jrbiHjnA4kxWFDRWboixNmh3FEXTttK6d1gONXP86rWv9m2ZmVe4LcxygLuXM9ST7AZsmcf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924678833</pqid></control><display><type>article</type><title>THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS)</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kulessa, A. S. ; Barrios, A. ; Claverie, J. ; Garrett, S. ; Haackck, T. ; Hackcker, J. M. ; Hansen, H. J. ; Horgan, K. ; Hurtaud, Y. ; Lemon, C. ; Marshall, R. ; McGregor, J. ; McMillan, M. ; Périard, C. ; Pourret, V. ; Price, J. ; Rogers, L. T. ; Short, C. ; Veasey, M. ; Wiss, V. R.</creator><creatorcontrib>Kulessa, A. S. ; Barrios, A. ; Claverie, J. ; Garrett, S. ; Haackck, T. ; Hackcker, J. M. ; Hansen, H. J. ; Horgan, K. ; Hurtaud, Y. ; Lemon, C. ; Marshall, R. ; McGregor, J. ; McMillan, M. ; Périard, C. ; Pourret, V. ; Price, J. ; Rogers, L. T. ; Short, C. ; Veasey, M. ; Wiss, V. R.</creatorcontrib><description>The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).
Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-14-00284.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air ; Aircraft ; Aircraft components ; Ascent ; Atmospheric models ; Boundary layer meteorology ; Boundary layers ; Climatology ; Coastal environments ; Electronic warfare ; Energy ; Engineering Sciences ; Entrainment ; Environmental Sciences ; Experimental design ; Extremely high frequencies ; Fluxes ; Gradients ; High frequency ; High resolution ; Investigations ; Lidar ; Meteorology ; Mixing layers (fluids) ; Moisture ; Momentum ; Offshore ; Predictions ; Propagation ; Radar systems ; Radio ; Radio frequency ; Radio wave propagation ; Radio waves ; Radiosondes ; Refractive index ; Refractivity ; Research aircraft ; Ships ; Superhigh frequencies ; Surface boundary layer ; Surface layers ; Temperature (air-sea) ; Towers ; Transmitters ; Tropical climate ; Variability ; Wave propagation ; Weather ; Weather forecasting</subject><ispartof>Bulletin of the American Meteorological Society, 2017-03, Vol.98 (3), p.517-538</ispartof><rights>2017 American Meteorological Society</rights><rights>COPYRIGHT 2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-232bd39860817205ebf85ab42d731f0b702c4d02d8b38d0621b998e3284903703</citedby><cites>FETCH-LOGICAL-c400t-232bd39860817205ebf85ab42d731f0b702c4d02d8b38d0621b998e3284903703</cites><orcidid>0000-0003-4208-2043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243698$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243698$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01522913$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulessa, A. S.</creatorcontrib><creatorcontrib>Barrios, A.</creatorcontrib><creatorcontrib>Claverie, J.</creatorcontrib><creatorcontrib>Garrett, S.</creatorcontrib><creatorcontrib>Haackck, T.</creatorcontrib><creatorcontrib>Hackcker, J. M.</creatorcontrib><creatorcontrib>Hansen, H. J.</creatorcontrib><creatorcontrib>Horgan, K.</creatorcontrib><creatorcontrib>Hurtaud, Y.</creatorcontrib><creatorcontrib>Lemon, C.</creatorcontrib><creatorcontrib>Marshall, R.</creatorcontrib><creatorcontrib>McGregor, J.</creatorcontrib><creatorcontrib>McMillan, M.</creatorcontrib><creatorcontrib>Périard, C.</creatorcontrib><creatorcontrib>Pourret, V.</creatorcontrib><creatorcontrib>Price, J.</creatorcontrib><creatorcontrib>Rogers, L. T.</creatorcontrib><creatorcontrib>Short, C.</creatorcontrib><creatorcontrib>Veasey, M.</creatorcontrib><creatorcontrib>Wiss, V. R.</creatorcontrib><title>THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS)</title><title>Bulletin of the American Meteorological Society</title><description>The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).
Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.</description><subject>Air</subject><subject>Aircraft</subject><subject>Aircraft components</subject><subject>Ascent</subject><subject>Atmospheric models</subject><subject>Boundary layer meteorology</subject><subject>Boundary layers</subject><subject>Climatology</subject><subject>Coastal environments</subject><subject>Electronic warfare</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Entrainment</subject><subject>Environmental Sciences</subject><subject>Experimental design</subject><subject>Extremely high frequencies</subject><subject>Fluxes</subject><subject>Gradients</subject><subject>High frequency</subject><subject>High resolution</subject><subject>Investigations</subject><subject>Lidar</subject><subject>Meteorology</subject><subject>Mixing layers (fluids)</subject><subject>Moisture</subject><subject>Momentum</subject><subject>Offshore</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Radar systems</subject><subject>Radio</subject><subject>Radio frequency</subject><subject>Radio wave propagation</subject><subject>Radio waves</subject><subject>Radiosondes</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Research aircraft</subject><subject>Ships</subject><subject>Superhigh frequencies</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Temperature (air-sea)</subject><subject>Towers</subject><subject>Transmitters</subject><subject>Tropical climate</subject><subject>Variability</subject><subject>Wave propagation</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM9OwkAQxjdGExF9AA8mTbzIoTCzu-1ujysgkKAQWg6eNv2rJUBxCybefAff0CextQZPk5n5zXwzHyHXCF1E4fTu1aNvD2zkNgCVvIsnpIUOBRu4EKekBQCsaoE4JxdluapTJrFFesF4aAWL2XzSV1NLTRbfn1_-UFnzqqRGKpjMniw_WA6erbtAzf3OJTnLwnWZXv3FNlk-DIP-2J7ORvUKO-YAe5syGiXMky5IFBScNMqkE0acJoJhBpEAGvMEaCIjJhNwKUaeJ1NWne4BE8DapNPsfQ3XemfyTWg-dBHmeqymuq5B9R31kL1jxd427M4Ub4e03OtVcTDb6jyNHuWukJKxf-olXKc632bF3oTxJi9jrbiHjnA4kxWFDRWboixNmh3FEXTttK6d1gONXP86rWv9m2ZmVe4LcxygLuXM9ST7AZsmcf4</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kulessa, A. S.</creator><creator>Barrios, A.</creator><creator>Claverie, J.</creator><creator>Garrett, S.</creator><creator>Haackck, T.</creator><creator>Hackcker, J. M.</creator><creator>Hansen, H. J.</creator><creator>Horgan, K.</creator><creator>Hurtaud, Y.</creator><creator>Lemon, C.</creator><creator>Marshall, R.</creator><creator>McGregor, J.</creator><creator>McMillan, M.</creator><creator>Périard, C.</creator><creator>Pourret, V.</creator><creator>Price, J.</creator><creator>Rogers, L. T.</creator><creator>Short, C.</creator><creator>Veasey, M.</creator><creator>Wiss, V. R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4208-2043</orcidid></search><sort><creationdate>20170301</creationdate><title>THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS)</title><author>Kulessa, A. S. ; Barrios, A. ; Claverie, J. ; Garrett, S. ; Haackck, T. ; Hackcker, J. M. ; Hansen, H. J. ; Horgan, K. ; Hurtaud, Y. ; Lemon, C. ; Marshall, R. ; McGregor, J. ; McMillan, M. ; Périard, C. ; Pourret, V. ; Price, J. ; Rogers, L. T. ; Short, C. ; Veasey, M. ; Wiss, V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-232bd39860817205ebf85ab42d731f0b702c4d02d8b38d0621b998e3284903703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air</topic><topic>Aircraft</topic><topic>Aircraft components</topic><topic>Ascent</topic><topic>Atmospheric models</topic><topic>Boundary layer meteorology</topic><topic>Boundary layers</topic><topic>Climatology</topic><topic>Coastal environments</topic><topic>Electronic warfare</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Entrainment</topic><topic>Environmental Sciences</topic><topic>Experimental design</topic><topic>Extremely high frequencies</topic><topic>Fluxes</topic><topic>Gradients</topic><topic>High frequency</topic><topic>High resolution</topic><topic>Investigations</topic><topic>Lidar</topic><topic>Meteorology</topic><topic>Mixing layers (fluids)</topic><topic>Moisture</topic><topic>Momentum</topic><topic>Offshore</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Radar systems</topic><topic>Radio</topic><topic>Radio frequency</topic><topic>Radio wave propagation</topic><topic>Radio waves</topic><topic>Radiosondes</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Research aircraft</topic><topic>Ships</topic><topic>Superhigh frequencies</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Temperature (air-sea)</topic><topic>Towers</topic><topic>Transmitters</topic><topic>Tropical climate</topic><topic>Variability</topic><topic>Wave propagation</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulessa, A. S.</creatorcontrib><creatorcontrib>Barrios, A.</creatorcontrib><creatorcontrib>Claverie, J.</creatorcontrib><creatorcontrib>Garrett, S.</creatorcontrib><creatorcontrib>Haackck, T.</creatorcontrib><creatorcontrib>Hackcker, J. M.</creatorcontrib><creatorcontrib>Hansen, H. J.</creatorcontrib><creatorcontrib>Horgan, K.</creatorcontrib><creatorcontrib>Hurtaud, Y.</creatorcontrib><creatorcontrib>Lemon, C.</creatorcontrib><creatorcontrib>Marshall, R.</creatorcontrib><creatorcontrib>McGregor, J.</creatorcontrib><creatorcontrib>McMillan, M.</creatorcontrib><creatorcontrib>Périard, C.</creatorcontrib><creatorcontrib>Pourret, V.</creatorcontrib><creatorcontrib>Price, J.</creatorcontrib><creatorcontrib>Rogers, L. T.</creatorcontrib><creatorcontrib>Short, C.</creatorcontrib><creatorcontrib>Veasey, M.</creatorcontrib><creatorcontrib>Wiss, V. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulessa, A. S.</au><au>Barrios, A.</au><au>Claverie, J.</au><au>Garrett, S.</au><au>Haackck, T.</au><au>Hackcker, J. M.</au><au>Hansen, H. J.</au><au>Horgan, K.</au><au>Hurtaud, Y.</au><au>Lemon, C.</au><au>Marshall, R.</au><au>McGregor, J.</au><au>McMillan, M.</au><au>Périard, C.</au><au>Pourret, V.</au><au>Price, J.</au><au>Rogers, L. T.</au><au>Short, C.</au><au>Veasey, M.</au><au>Wiss, V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS)</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>98</volume><issue>3</issue><spage>517</spage><epage>538</epage><pages>517-538</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The purpose of the Tropical Air–Sea Propagation Study (TAPS), which was conducted during November–December 2013, was to gather coordinated atmospheric and radio frequency (RF) data, offshore of northeastern Australia, in order to address the question of how well radio wave propagation can be predicted in a clear-air, tropical, littoral maritime environment. Spatiotemporal variations in vertical gradients of the conserved thermodynamic variables found in surface layers, mixing layers, and entrainment layers have the potential to bend or refract RF energy in directions that can either enhance or limit the intended function of an RF system. TAPS facilitated the collaboration of scientists and technologists from the United Kingdom, the United States, France, New Zealand, and Australia, bringing together expertise in boundary layer meteorology, mesoscale numerical weather prediction (NWP), and RF propagation. The focus of the study was on investigating for the first time in a tropical, littoral environment the i) refractivity structure in the marine and coastal inland boundary layers; ii) the spatial and temporal behavior of momentum, heat, and moisture fluxes; and iii) the ability of propagation models seeded with refractive index functions derived from blended NWP and surface-layer models to predict the propagation of radio wave signals of ultrahigh frequency (UHF; 300 MHz–3 GHz), super-high frequency (SHF; 3–30 GHz), and extremely high frequency (EHF; 30–300 GHz).
Coordinated atmospheric and RF measurements were made using a small research aircraft, slow-ascent radiosondes, lidar, flux towers, a kitesonde, and land-based transmitters. The use of a ship as an RF-receiving platform facilitated variable-range RF links extending to distances of 80 km from the mainland. Four high-resolution NWP forecasting systems were employed to characterize environmental variability. This paper provides an overview of the TAPS experimental design and field campaign, including a description of the unique data that were collected, preliminary findings, and the envisaged interpretation of the results.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-14-00284.1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4208-2043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2017-03, Vol.98 (3), p.517-538 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01522913v1 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Air Aircraft Aircraft components Ascent Atmospheric models Boundary layer meteorology Boundary layers Climatology Coastal environments Electronic warfare Energy Engineering Sciences Entrainment Environmental Sciences Experimental design Extremely high frequencies Fluxes Gradients High frequency High resolution Investigations Lidar Meteorology Mixing layers (fluids) Moisture Momentum Offshore Predictions Propagation Radar systems Radio Radio frequency Radio wave propagation Radio waves Radiosondes Refractive index Refractivity Research aircraft Ships Superhigh frequencies Surface boundary layer Surface layers Temperature (air-sea) Towers Transmitters Tropical climate Variability Wave propagation Weather Weather forecasting |
title | THE TROPICAL AIR–SEA PROPAGATION STUDY (TAPS) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20TROPICAL%20AIR%E2%80%93SEA%20PROPAGATION%20STUDY%20(TAPS)&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Kulessa,%20A.%20S.&rft.date=2017-03-01&rft.volume=98&rft.issue=3&rft.spage=517&rft.epage=538&rft.pages=517-538&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-14-00284.1&rft_dat=%3Cgale_hal_p%3EA491575438%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924678833&rft_id=info:pmid/&rft_galeid=A491575438&rft_jstor_id=26243698&rfr_iscdi=true |