Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis

Organizing active enzyme molecules on nanometer‐sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-04, Vol.13 (13), p.np-n/a
Hauptverfasser: Patel, Anisha N., Anne, Agnès, Chovin, Arnaud, Demaille, Christophe, Grelet, Eric, Michon, Thierry, Taofifenua, Cécilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page np
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 13
creator Patel, Anisha N.
Anne, Agnès
Chovin, Arnaud
Demaille, Christophe
Grelet, Eric
Michon, Thierry
Taofifenua, Cécilia
description Organizing active enzyme molecules on nanometer‐sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalytic activity. Herein, the virus fd bacteriophage is considered as an enzyme nanocarrier to study the scaffolding effects on enzymatic activity. Nanoarrays of randomly oriented, or directionally patterned, fd bacteriophage virus are functionalized with the enzyme glucose oxidase (GOx), using an immunological assembly strategy, directly on a gold electrode support. The scaffolding process on the virus capsid is monitored in situ by AFM (atomic force microscopy) imaging, while cyclic voltammetry is used to interrogate the catalytic activity of the resulting functional GOx‐fd nanoarrays. Kinetic analysis reveals the ability to modulate the activity of GOx via nanocarrier patterning. The results evidence, for the first time, enhancement of the enzymatic activity due to scaffolding on a filamentous viral particle. Glucose oxidase scaffolded virus nanoarrays with tunable catalytic properties are directly organized onto electrode supports using immunodecoration for assembly. Structural and catalytic characterization reveals the effect of enzyme confinement on kinetic activity as a function of virus organization. Enhanced catalysis for glucose oxidase is found for randomly oriented GOx‐fd nanoarrays compared to aligned nanoarrays and reference nonscaffolded enzyme molecules.
doi_str_mv 10.1002/smll.201603163
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01522511v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321377947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5763-a2510448177513e0e0f6e6c2a0d86ed1c04298b99f06847f4813d109dbce20183</originalsourceid><addsrcrecordid>eNqN0kGL1DAUAOAgiruuXj1KwYseZnwvadPE2zqMrlDdw6rXkGmTNUubrEmrdH-9KTOO4MWFQEL43nvk5RHyHGGNAPRNGvp-TQE5MOTsATlFjmzFBZUPj2eEE_IkpRvIhpb1Y3JCBUghOTsl7qrV1oa-c_66CLbY-rt5MKkIvvjm4pSKz9oHHaOe09tia61px7S4TfDWeTMYPxbadwd8Ga-1d3d6dDk-r3cutHrU_ZxcekoeWd0n8-ywn5Gv77dfNher5vLDx815s2qrmrOVphVCWQqs6wqZAQOWG95SDZ3gpsMWSirFTkoLXJS1zZJ1CLLbtSb3QbAz8nqf97vu1W10g46zCtqpi_NGLXeAFc1F8Cdm-2pvb2P4MZk0qsGl1vS99iZMSaGQNRMlCnEfyiTICup7UI4VF6ySmb78h96EKfrcH7UURYRKLGq9V20MKUVjj-9CUMsYqGUM1HEMcsCLQ9ppN5juyP_8ewZyD3653sz_SaeuPjXN3-S_AfpUu_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883110589</pqid></control><display><type>article</type><title>Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Patel, Anisha N. ; Anne, Agnès ; Chovin, Arnaud ; Demaille, Christophe ; Grelet, Eric ; Michon, Thierry ; Taofifenua, Cécilia</creator><creatorcontrib>Patel, Anisha N. ; Anne, Agnès ; Chovin, Arnaud ; Demaille, Christophe ; Grelet, Eric ; Michon, Thierry ; Taofifenua, Cécilia</creatorcontrib><description>Organizing active enzyme molecules on nanometer‐sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalytic activity. Herein, the virus fd bacteriophage is considered as an enzyme nanocarrier to study the scaffolding effects on enzymatic activity. Nanoarrays of randomly oriented, or directionally patterned, fd bacteriophage virus are functionalized with the enzyme glucose oxidase (GOx), using an immunological assembly strategy, directly on a gold electrode support. The scaffolding process on the virus capsid is monitored in situ by AFM (atomic force microscopy) imaging, while cyclic voltammetry is used to interrogate the catalytic activity of the resulting functional GOx‐fd nanoarrays. Kinetic analysis reveals the ability to modulate the activity of GOx via nanocarrier patterning. The results evidence, for the first time, enhancement of the enzymatic activity due to scaffolding on a filamentous viral particle. Glucose oxidase scaffolded virus nanoarrays with tunable catalytic properties are directly organized onto electrode supports using immunodecoration for assembly. Structural and catalytic characterization reveals the effect of enzyme confinement on kinetic activity as a function of virus organization. Enhanced catalysis for glucose oxidase is found for randomly oriented GOx‐fd nanoarrays compared to aligned nanoarrays and reference nonscaffolded enzyme molecules.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201603163</identifier><identifier>PMID: 28098963</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocatalysis ; Biosensing Techniques ; Catalysis ; Catalysts ; Electrochemistry ; Electrodes ; enzyme nanocarriers ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; functional nanoparticles ; Glucose oxidase ; Glucose Oxidase - chemistry ; Glucose Oxidase - metabolism ; glucose oxidase kinetics ; Nanoparticles ; Nanostructure ; Nanotechnology ; Physics ; Scaffolding ; virus nanotechnology ; Viruses</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-04, Vol.13 (13), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5763-a2510448177513e0e0f6e6c2a0d86ed1c04298b99f06847f4813d109dbce20183</citedby><cites>FETCH-LOGICAL-c5763-a2510448177513e0e0f6e6c2a0d86ed1c04298b99f06847f4813d109dbce20183</cites><orcidid>0000-0002-0041-9376 ; 0000-0002-9645-7077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201603163$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201603163$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28098963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01522511$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Anisha N.</creatorcontrib><creatorcontrib>Anne, Agnès</creatorcontrib><creatorcontrib>Chovin, Arnaud</creatorcontrib><creatorcontrib>Demaille, Christophe</creatorcontrib><creatorcontrib>Grelet, Eric</creatorcontrib><creatorcontrib>Michon, Thierry</creatorcontrib><creatorcontrib>Taofifenua, Cécilia</creatorcontrib><title>Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Organizing active enzyme molecules on nanometer‐sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalytic activity. Herein, the virus fd bacteriophage is considered as an enzyme nanocarrier to study the scaffolding effects on enzymatic activity. Nanoarrays of randomly oriented, or directionally patterned, fd bacteriophage virus are functionalized with the enzyme glucose oxidase (GOx), using an immunological assembly strategy, directly on a gold electrode support. The scaffolding process on the virus capsid is monitored in situ by AFM (atomic force microscopy) imaging, while cyclic voltammetry is used to interrogate the catalytic activity of the resulting functional GOx‐fd nanoarrays. Kinetic analysis reveals the ability to modulate the activity of GOx via nanocarrier patterning. The results evidence, for the first time, enhancement of the enzymatic activity due to scaffolding on a filamentous viral particle. Glucose oxidase scaffolded virus nanoarrays with tunable catalytic properties are directly organized onto electrode supports using immunodecoration for assembly. Structural and catalytic characterization reveals the effect of enzyme confinement on kinetic activity as a function of virus organization. Enhanced catalysis for glucose oxidase is found for randomly oriented GOx‐fd nanoarrays compared to aligned nanoarrays and reference nonscaffolded enzyme molecules.</description><subject>Biocatalysis</subject><subject>Biosensing Techniques</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>enzyme nanocarriers</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>functional nanoparticles</subject><subject>Glucose oxidase</subject><subject>Glucose Oxidase - chemistry</subject><subject>Glucose Oxidase - metabolism</subject><subject>glucose oxidase kinetics</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Scaffolding</subject><subject>virus nanotechnology</subject><subject>Viruses</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0kGL1DAUAOAgiruuXj1KwYseZnwvadPE2zqMrlDdw6rXkGmTNUubrEmrdH-9KTOO4MWFQEL43nvk5RHyHGGNAPRNGvp-TQE5MOTsATlFjmzFBZUPj2eEE_IkpRvIhpb1Y3JCBUghOTsl7qrV1oa-c_66CLbY-rt5MKkIvvjm4pSKz9oHHaOe09tia61px7S4TfDWeTMYPxbadwd8Ga-1d3d6dDk-r3cutHrU_ZxcekoeWd0n8-ywn5Gv77dfNher5vLDx815s2qrmrOVphVCWQqs6wqZAQOWG95SDZ3gpsMWSirFTkoLXJS1zZJ1CLLbtSb3QbAz8nqf97vu1W10g46zCtqpi_NGLXeAFc1F8Cdm-2pvb2P4MZk0qsGl1vS99iZMSaGQNRMlCnEfyiTICup7UI4VF6ySmb78h96EKfrcH7UURYRKLGq9V20MKUVjj-9CUMsYqGUM1HEMcsCLQ9ppN5juyP_8ewZyD3653sz_SaeuPjXN3-S_AfpUu_c</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Patel, Anisha N.</creator><creator>Anne, Agnès</creator><creator>Chovin, Arnaud</creator><creator>Demaille, Christophe</creator><creator>Grelet, Eric</creator><creator>Michon, Thierry</creator><creator>Taofifenua, Cécilia</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>7U9</scope><scope>H94</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0041-9376</orcidid><orcidid>https://orcid.org/0000-0002-9645-7077</orcidid></search><sort><creationdate>201704</creationdate><title>Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis</title><author>Patel, Anisha N. ; Anne, Agnès ; Chovin, Arnaud ; Demaille, Christophe ; Grelet, Eric ; Michon, Thierry ; Taofifenua, Cécilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5763-a2510448177513e0e0f6e6c2a0d86ed1c04298b99f06847f4813d109dbce20183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocatalysis</topic><topic>Biosensing Techniques</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>enzyme nanocarriers</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>functional nanoparticles</topic><topic>Glucose oxidase</topic><topic>Glucose Oxidase - chemistry</topic><topic>Glucose Oxidase - metabolism</topic><topic>glucose oxidase kinetics</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Scaffolding</topic><topic>virus nanotechnology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Anisha N.</creatorcontrib><creatorcontrib>Anne, Agnès</creatorcontrib><creatorcontrib>Chovin, Arnaud</creatorcontrib><creatorcontrib>Demaille, Christophe</creatorcontrib><creatorcontrib>Grelet, Eric</creatorcontrib><creatorcontrib>Michon, Thierry</creatorcontrib><creatorcontrib>Taofifenua, Cécilia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Anisha N.</au><au>Anne, Agnès</au><au>Chovin, Arnaud</au><au>Demaille, Christophe</au><au>Grelet, Eric</au><au>Michon, Thierry</au><au>Taofifenua, Cécilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-04</date><risdate>2017</risdate><volume>13</volume><issue>13</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Organizing active enzyme molecules on nanometer‐sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalytic activity. Herein, the virus fd bacteriophage is considered as an enzyme nanocarrier to study the scaffolding effects on enzymatic activity. Nanoarrays of randomly oriented, or directionally patterned, fd bacteriophage virus are functionalized with the enzyme glucose oxidase (GOx), using an immunological assembly strategy, directly on a gold electrode support. The scaffolding process on the virus capsid is monitored in situ by AFM (atomic force microscopy) imaging, while cyclic voltammetry is used to interrogate the catalytic activity of the resulting functional GOx‐fd nanoarrays. Kinetic analysis reveals the ability to modulate the activity of GOx via nanocarrier patterning. The results evidence, for the first time, enhancement of the enzymatic activity due to scaffolding on a filamentous viral particle. Glucose oxidase scaffolded virus nanoarrays with tunable catalytic properties are directly organized onto electrode supports using immunodecoration for assembly. Structural and catalytic characterization reveals the effect of enzyme confinement on kinetic activity as a function of virus organization. Enhanced catalysis for glucose oxidase is found for randomly oriented GOx‐fd nanoarrays compared to aligned nanoarrays and reference nonscaffolded enzyme molecules.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28098963</pmid><doi>10.1002/smll.201603163</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0041-9376</orcidid><orcidid>https://orcid.org/0000-0002-9645-7077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2017-04, Vol.13 (13), p.np-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_hal_primary_oai_HAL_hal_01522511v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biocatalysis
Biosensing Techniques
Catalysis
Catalysts
Electrochemistry
Electrodes
enzyme nanocarriers
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
functional nanoparticles
Glucose oxidase
Glucose Oxidase - chemistry
Glucose Oxidase - metabolism
glucose oxidase kinetics
Nanoparticles
Nanostructure
Nanotechnology
Physics
Scaffolding
virus nanotechnology
Viruses
title Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffolding%20of%20Enzymes%20on%20Virus%20Nanoarrays:%20Effects%20of%20Confinement%20and%20Virus%20Organization%20on%20Biocatalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Patel,%20Anisha%20N.&rft.date=2017-04&rft.volume=13&rft.issue=13&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201603163&rft_dat=%3Cproquest_hal_p%3E4321377947%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883110589&rft_id=info:pmid/28098963&rfr_iscdi=true