Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique

A facile and low cost method to construct a bismuth vanadate thin film photoanode was implemented with the aim of integrating it in a tandem dual water splitting photoelectrochemical cell. Multilayer semi‐transparent thin films of BiVO4 were fabricated by a sol–gel process and deposited by dip‐coati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemPhotoChem 2017-06, Vol.1 (6), p.273-280
Hauptverfasser: Hilliard, Samantha, Friedrich, Dennis, Kressman, Stéphane, Strub, Henri, Artero, Vincent, Laberty‐Robert, Christel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 6
container_start_page 273
container_title ChemPhotoChem
container_volume 1
creator Hilliard, Samantha
Friedrich, Dennis
Kressman, Stéphane
Strub, Henri
Artero, Vincent
Laberty‐Robert, Christel
description A facile and low cost method to construct a bismuth vanadate thin film photoanode was implemented with the aim of integrating it in a tandem dual water splitting photoelectrochemical cell. Multilayer semi‐transparent thin films of BiVO4 were fabricated by a sol–gel process and deposited by dip‐coating onto transparent conducting oxide substrates with intermediate annealing treatment between layers and final calcination at a low temperature of 450 °C in air. The effect of the intermediate annealing temperature has a great impact on the porosity, and therefore density, of thin layers of BiVO4 when fabricated by sol–gel dip‐coating methods; thus, for optimal activity, the annealing temperature should be kept at 400 °C for thinner layers and 450 °C for thicker layers. The annealing temperature has a direct effect on the size of the crystallites which determines the microstructural density and porosity. In contrast, the final calcination temperature must be 450 °C in order to achieve good electrochemical performances. Optimized BiVO4 photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH potassium phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation. The heat is on: Optimized BiVO4 photoanodes were prepared from multilayer thin films of BiVO4 dip‐coated onto transparent conducting oxide substrates with an intermediate annealing treatment between layers. The photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation.
doi_str_mv 10.1002/cptc.201700003
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01522431v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CPTC201700003</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3053-b546c325a8ad8fcce1daeec2d349ef6a8bd0c5b658c3d819790c1caa1c38d3313</originalsourceid><addsrcrecordid>eNpNkM1OwkAUhSdGEwmydT1bF8X56ZR2CVXAhAQSii4nl5nBjhna2lYMOx7BxDfkSWzFEO_m3Hvy3bM4CN1S0qeEsHtV1KrPCB2QZvgF6jAeDDwScXb5b79Gvap6awga-oISv4O2y9xBeTx8vUBtWl0Wzta1zV7xyD7PfZykNmvssXVbvEjzOocs16bCi9IUUBqNR3u8qloecJN1PHxPjMMPtmie4hx-kxKj0sy-f5gbdLUBV5nen3bRavyYxFNvNp88xcOZl3IiuLcWfqA4ExCCDjdKGarBGMU09yOzCSBca6LEOhCh4jqk0SAiiioAqnioOae8i-5OuSk4WZR2C-Ve5mDldDiTrUeoYMzndNey0Yn9tM7szzQlsi1WtsXKc7EyXiTx-eI_qvtzsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique</title><source>Wiley Online Library All Journals</source><creator>Hilliard, Samantha ; Friedrich, Dennis ; Kressman, Stéphane ; Strub, Henri ; Artero, Vincent ; Laberty‐Robert, Christel</creator><creatorcontrib>Hilliard, Samantha ; Friedrich, Dennis ; Kressman, Stéphane ; Strub, Henri ; Artero, Vincent ; Laberty‐Robert, Christel</creatorcontrib><description>A facile and low cost method to construct a bismuth vanadate thin film photoanode was implemented with the aim of integrating it in a tandem dual water splitting photoelectrochemical cell. Multilayer semi‐transparent thin films of BiVO4 were fabricated by a sol–gel process and deposited by dip‐coating onto transparent conducting oxide substrates with intermediate annealing treatment between layers and final calcination at a low temperature of 450 °C in air. The effect of the intermediate annealing temperature has a great impact on the porosity, and therefore density, of thin layers of BiVO4 when fabricated by sol–gel dip‐coating methods; thus, for optimal activity, the annealing temperature should be kept at 400 °C for thinner layers and 450 °C for thicker layers. The annealing temperature has a direct effect on the size of the crystallites which determines the microstructural density and porosity. In contrast, the final calcination temperature must be 450 °C in order to achieve good electrochemical performances. Optimized BiVO4 photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH potassium phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation. The heat is on: Optimized BiVO4 photoanodes were prepared from multilayer thin films of BiVO4 dip‐coated onto transparent conducting oxide substrates with an intermediate annealing treatment between layers. The photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation.</description><identifier>ISSN: 2367-0932</identifier><identifier>EISSN: 2367-0932</identifier><identifier>DOI: 10.1002/cptc.201700003</identifier><language>eng</language><publisher>Wiley</publisher><subject>BiVO4 ; Chemical Sciences ; mesoporous materials ; oxygen evolution reaction ; photoanodes ; sol–gel processes</subject><ispartof>ChemPhotoChem, 2017-06, Vol.1 (6), p.273-280</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3230-3164 ; 0000-0002-6148-8471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcptc.201700003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcptc.201700003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01522431$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hilliard, Samantha</creatorcontrib><creatorcontrib>Friedrich, Dennis</creatorcontrib><creatorcontrib>Kressman, Stéphane</creatorcontrib><creatorcontrib>Strub, Henri</creatorcontrib><creatorcontrib>Artero, Vincent</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><title>Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique</title><title>ChemPhotoChem</title><description>A facile and low cost method to construct a bismuth vanadate thin film photoanode was implemented with the aim of integrating it in a tandem dual water splitting photoelectrochemical cell. Multilayer semi‐transparent thin films of BiVO4 were fabricated by a sol–gel process and deposited by dip‐coating onto transparent conducting oxide substrates with intermediate annealing treatment between layers and final calcination at a low temperature of 450 °C in air. The effect of the intermediate annealing temperature has a great impact on the porosity, and therefore density, of thin layers of BiVO4 when fabricated by sol–gel dip‐coating methods; thus, for optimal activity, the annealing temperature should be kept at 400 °C for thinner layers and 450 °C for thicker layers. The annealing temperature has a direct effect on the size of the crystallites which determines the microstructural density and porosity. In contrast, the final calcination temperature must be 450 °C in order to achieve good electrochemical performances. Optimized BiVO4 photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH potassium phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation. The heat is on: Optimized BiVO4 photoanodes were prepared from multilayer thin films of BiVO4 dip‐coated onto transparent conducting oxide substrates with an intermediate annealing treatment between layers. The photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation.</description><subject>BiVO4</subject><subject>Chemical Sciences</subject><subject>mesoporous materials</subject><subject>oxygen evolution reaction</subject><subject>photoanodes</subject><subject>sol–gel processes</subject><issn>2367-0932</issn><issn>2367-0932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwkAUhSdGEwmydT1bF8X56ZR2CVXAhAQSii4nl5nBjhna2lYMOx7BxDfkSWzFEO_m3Hvy3bM4CN1S0qeEsHtV1KrPCB2QZvgF6jAeDDwScXb5b79Gvap6awga-oISv4O2y9xBeTx8vUBtWl0Wzta1zV7xyD7PfZykNmvssXVbvEjzOocs16bCi9IUUBqNR3u8qloecJN1PHxPjMMPtmie4hx-kxKj0sy-f5gbdLUBV5nen3bRavyYxFNvNp88xcOZl3IiuLcWfqA4ExCCDjdKGarBGMU09yOzCSBca6LEOhCh4jqk0SAiiioAqnioOae8i-5OuSk4WZR2C-Ve5mDldDiTrUeoYMzndNey0Yn9tM7szzQlsi1WtsXKc7EyXiTx-eI_qvtzsQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Hilliard, Samantha</creator><creator>Friedrich, Dennis</creator><creator>Kressman, Stéphane</creator><creator>Strub, Henri</creator><creator>Artero, Vincent</creator><creator>Laberty‐Robert, Christel</creator><general>Wiley</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-6148-8471</orcidid></search><sort><creationdate>201706</creationdate><title>Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique</title><author>Hilliard, Samantha ; Friedrich, Dennis ; Kressman, Stéphane ; Strub, Henri ; Artero, Vincent ; Laberty‐Robert, Christel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3053-b546c325a8ad8fcce1daeec2d349ef6a8bd0c5b658c3d819790c1caa1c38d3313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BiVO4</topic><topic>Chemical Sciences</topic><topic>mesoporous materials</topic><topic>oxygen evolution reaction</topic><topic>photoanodes</topic><topic>sol–gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilliard, Samantha</creatorcontrib><creatorcontrib>Friedrich, Dennis</creatorcontrib><creatorcontrib>Kressman, Stéphane</creatorcontrib><creatorcontrib>Strub, Henri</creatorcontrib><creatorcontrib>Artero, Vincent</creatorcontrib><creatorcontrib>Laberty‐Robert, Christel</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ChemPhotoChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilliard, Samantha</au><au>Friedrich, Dennis</au><au>Kressman, Stéphane</au><au>Strub, Henri</au><au>Artero, Vincent</au><au>Laberty‐Robert, Christel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique</atitle><jtitle>ChemPhotoChem</jtitle><date>2017-06</date><risdate>2017</risdate><volume>1</volume><issue>6</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>2367-0932</issn><eissn>2367-0932</eissn><abstract>A facile and low cost method to construct a bismuth vanadate thin film photoanode was implemented with the aim of integrating it in a tandem dual water splitting photoelectrochemical cell. Multilayer semi‐transparent thin films of BiVO4 were fabricated by a sol–gel process and deposited by dip‐coating onto transparent conducting oxide substrates with intermediate annealing treatment between layers and final calcination at a low temperature of 450 °C in air. The effect of the intermediate annealing temperature has a great impact on the porosity, and therefore density, of thin layers of BiVO4 when fabricated by sol–gel dip‐coating methods; thus, for optimal activity, the annealing temperature should be kept at 400 °C for thinner layers and 450 °C for thicker layers. The annealing temperature has a direct effect on the size of the crystallites which determines the microstructural density and porosity. In contrast, the final calcination temperature must be 450 °C in order to achieve good electrochemical performances. Optimized BiVO4 photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH potassium phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation. The heat is on: Optimized BiVO4 photoanodes were prepared from multilayer thin films of BiVO4 dip‐coated onto transparent conducting oxide substrates with an intermediate annealing treatment between layers. The photoanodes exhibit a photocurrent of up to 2.1 mA cm−2 with an average Faradic efficiency of 85 % for oxygen evolution in neutral pH phosphate buffer at 1.23 V vs. RHE under 350 mW cm−2 light irradiation.</abstract><pub>Wiley</pub><doi>10.1002/cptc.201700003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><orcidid>https://orcid.org/0000-0002-6148-8471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2367-0932
ispartof ChemPhotoChem, 2017-06, Vol.1 (6), p.273-280
issn 2367-0932
2367-0932
language eng
recordid cdi_hal_primary_oai_HAL_hal_01522431v1
source Wiley Online Library All Journals
subjects BiVO4
Chemical Sciences
mesoporous materials
oxygen evolution reaction
photoanodes
sol–gel processes
title Solar‐Water‐Splitting BiVO4 Thin‐Film Photoanodes Prepared By Using a Sol–Gel Dip‐Coating Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Water%E2%80%90Splitting%20BiVO4%20Thin%E2%80%90Film%20Photoanodes%20Prepared%20By%20Using%20a%20Sol%E2%80%93Gel%20Dip%E2%80%90Coating%20Technique&rft.jtitle=ChemPhotoChem&rft.au=Hilliard,%20Samantha&rft.date=2017-06&rft.volume=1&rft.issue=6&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=2367-0932&rft.eissn=2367-0932&rft_id=info:doi/10.1002/cptc.201700003&rft_dat=%3Cwiley_hal_p%3ECPTC201700003%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true