Spreading in kinetic reaction–transport equations in higher velocity dimensions

In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded vel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2019-04, Vol.30 (2), p.219-247
Hauptverfasser: BOUIN, EMERIC, CAILLERIE, NILS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 2
container_start_page 219
container_title European journal of applied mathematics
container_volume 30
creator BOUIN, EMERIC
CAILLERIE, NILS
description In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.
doi_str_mv 10.1017/S0956792518000037
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01518398v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792518000037</cupid><sourcerecordid>2300608462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</originalsourceid><addsrcrecordid>eNp1kEFLwzAcxYMoOKcfwFvBk4fqP03aNMcx1AkDke0e0jTZMre2S7qBN7-D39BPYsKGHsQcEnjv9x7hIXSN4Q4DZvcz4HnBeJbjEsIh7AQNMC14SmmWn6JBtNPon6ML71cAmADjA_Q665yWtW0WiW2SN9vo3qokSKq3bfP18dk72fiudX2itzsZRR_JpV0stUv2et0q278ntd3oxkf3Ep0Zufb66vgO0fzxYT6epNOXp-fxaJoqwmkf7iwzsja0IjwrJGaM54rnoDVIaojWGFekNrzK64Ixg2lOC6MMoYqXjAAZottD7VKuRefsRrp30UorJqOpiBrgsAXh5T4L7M2B7Vy73Wnfi1W7c034ncgIQAElLSKFD5RyrfdOm59aDCKOLP6MHDLkmJGbytl6oX-r_099A-3lfzc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300608462</pqid></control><display><type>article</type><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><source>Cambridge University Press Journals Complete</source><creator>BOUIN, EMERIC ; CAILLERIE, NILS</creator><creatorcontrib>BOUIN, EMERIC ; CAILLERIE, NILS</creatorcontrib><description>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792518000037</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analysis of PDEs ; Applied mathematics ; Mathematics ; Propagation ; Transport equations ; Traveling waves</subject><ispartof>European journal of applied mathematics, 2019-04, Vol.30 (2), p.219-247</ispartof><rights>Copyright © Cambridge University Press 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</citedby><cites>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792518000037/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01518398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUIN, EMERIC</creatorcontrib><creatorcontrib>CAILLERIE, NILS</creatorcontrib><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</description><subject>Analysis of PDEs</subject><subject>Applied mathematics</subject><subject>Mathematics</subject><subject>Propagation</subject><subject>Transport equations</subject><subject>Traveling waves</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLwzAcxYMoOKcfwFvBk4fqP03aNMcx1AkDke0e0jTZMre2S7qBN7-D39BPYsKGHsQcEnjv9x7hIXSN4Q4DZvcz4HnBeJbjEsIh7AQNMC14SmmWn6JBtNPon6ML71cAmADjA_Q665yWtW0WiW2SN9vo3qokSKq3bfP18dk72fiudX2itzsZRR_JpV0stUv2et0q278ntd3oxkf3Ep0Zufb66vgO0fzxYT6epNOXp-fxaJoqwmkf7iwzsja0IjwrJGaM54rnoDVIaojWGFekNrzK64Ixg2lOC6MMoYqXjAAZottD7VKuRefsRrp30UorJqOpiBrgsAXh5T4L7M2B7Vy73Wnfi1W7c034ncgIQAElLSKFD5RyrfdOm59aDCKOLP6MHDLkmJGbytl6oX-r_099A-3lfzc</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>BOUIN, EMERIC</creator><creator>CAILLERIE, NILS</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201904</creationdate><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><author>BOUIN, EMERIC ; CAILLERIE, NILS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of PDEs</topic><topic>Applied mathematics</topic><topic>Mathematics</topic><topic>Propagation</topic><topic>Transport equations</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUIN, EMERIC</creatorcontrib><creatorcontrib>CAILLERIE, NILS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUIN, EMERIC</au><au>CAILLERIE, NILS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading in kinetic reaction–transport equations in higher velocity dimensions</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2019-04</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>219</spage><epage>247</epage><pages>219-247</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792518000037</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-7925
ispartof European journal of applied mathematics, 2019-04, Vol.30 (2), p.219-247
issn 0956-7925
1469-4425
language eng
recordid cdi_hal_primary_oai_HAL_hal_01518398v2
source Cambridge University Press Journals Complete
subjects Analysis of PDEs
Applied mathematics
Mathematics
Propagation
Transport equations
Traveling waves
title Spreading in kinetic reaction–transport equations in higher velocity dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20in%20kinetic%20reaction%E2%80%93transport%20equations%20in%20higher%20velocity%20dimensions&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=BOUIN,%20EMERIC&rft.date=2019-04&rft.volume=30&rft.issue=2&rft.spage=219&rft.epage=247&rft.pages=219-247&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792518000037&rft_dat=%3Cproquest_hal_p%3E2300608462%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300608462&rft_id=info:pmid/&rft_cupid=10_1017_S0956792518000037&rfr_iscdi=true