Spreading in kinetic reaction–transport equations in higher velocity dimensions
In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded vel...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2019-04, Vol.30 (2), p.219-247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | European journal of applied mathematics |
container_volume | 30 |
creator | BOUIN, EMERIC CAILLERIE, NILS |
description | In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition. |
doi_str_mv | 10.1017/S0956792518000037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01518398v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792518000037</cupid><sourcerecordid>2300608462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</originalsourceid><addsrcrecordid>eNp1kEFLwzAcxYMoOKcfwFvBk4fqP03aNMcx1AkDke0e0jTZMre2S7qBN7-D39BPYsKGHsQcEnjv9x7hIXSN4Q4DZvcz4HnBeJbjEsIh7AQNMC14SmmWn6JBtNPon6ML71cAmADjA_Q665yWtW0WiW2SN9vo3qokSKq3bfP18dk72fiudX2itzsZRR_JpV0stUv2et0q278ntd3oxkf3Ep0Zufb66vgO0fzxYT6epNOXp-fxaJoqwmkf7iwzsja0IjwrJGaM54rnoDVIaojWGFekNrzK64Ixg2lOC6MMoYqXjAAZottD7VKuRefsRrp30UorJqOpiBrgsAXh5T4L7M2B7Vy73Wnfi1W7c034ncgIQAElLSKFD5RyrfdOm59aDCKOLP6MHDLkmJGbytl6oX-r_099A-3lfzc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300608462</pqid></control><display><type>article</type><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><source>Cambridge University Press Journals Complete</source><creator>BOUIN, EMERIC ; CAILLERIE, NILS</creator><creatorcontrib>BOUIN, EMERIC ; CAILLERIE, NILS</creatorcontrib><description>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792518000037</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analysis of PDEs ; Applied mathematics ; Mathematics ; Propagation ; Transport equations ; Traveling waves</subject><ispartof>European journal of applied mathematics, 2019-04, Vol.30 (2), p.219-247</ispartof><rights>Copyright © Cambridge University Press 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</citedby><cites>FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792518000037/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01518398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUIN, EMERIC</creatorcontrib><creatorcontrib>CAILLERIE, NILS</creatorcontrib><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</description><subject>Analysis of PDEs</subject><subject>Applied mathematics</subject><subject>Mathematics</subject><subject>Propagation</subject><subject>Transport equations</subject><subject>Traveling waves</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLwzAcxYMoOKcfwFvBk4fqP03aNMcx1AkDke0e0jTZMre2S7qBN7-D39BPYsKGHsQcEnjv9x7hIXSN4Q4DZvcz4HnBeJbjEsIh7AQNMC14SmmWn6JBtNPon6ML71cAmADjA_Q665yWtW0WiW2SN9vo3qokSKq3bfP18dk72fiudX2itzsZRR_JpV0stUv2et0q278ntd3oxkf3Ep0Zufb66vgO0fzxYT6epNOXp-fxaJoqwmkf7iwzsja0IjwrJGaM54rnoDVIaojWGFekNrzK64Ixg2lOC6MMoYqXjAAZottD7VKuRefsRrp30UorJqOpiBrgsAXh5T4L7M2B7Vy73Wnfi1W7c034ncgIQAElLSKFD5RyrfdOm59aDCKOLP6MHDLkmJGbytl6oX-r_099A-3lfzc</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>BOUIN, EMERIC</creator><creator>CAILLERIE, NILS</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201904</creationdate><title>Spreading in kinetic reaction–transport equations in higher velocity dimensions</title><author>BOUIN, EMERIC ; CAILLERIE, NILS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c322fadf4b3926a17795c950ee0a4f3ee11b3df9b5d677f14546fcf34c987303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of PDEs</topic><topic>Applied mathematics</topic><topic>Mathematics</topic><topic>Propagation</topic><topic>Transport equations</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUIN, EMERIC</creatorcontrib><creatorcontrib>CAILLERIE, NILS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUIN, EMERIC</au><au>CAILLERIE, NILS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading in kinetic reaction–transport equations in higher velocity dimensions</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2019-04</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>219</spage><epage>247</epage><pages>219-247</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792518000037</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2019-04, Vol.30 (2), p.219-247 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01518398v2 |
source | Cambridge University Press Journals Complete |
subjects | Analysis of PDEs Applied mathematics Mathematics Propagation Transport equations Traveling waves |
title | Spreading in kinetic reaction–transport equations in higher velocity dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20in%20kinetic%20reaction%E2%80%93transport%20equations%20in%20higher%20velocity%20dimensions&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=BOUIN,%20EMERIC&rft.date=2019-04&rft.volume=30&rft.issue=2&rft.spage=219&rft.epage=247&rft.pages=219-247&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792518000037&rft_dat=%3Cproquest_hal_p%3E2300608462%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300608462&rft_id=info:pmid/&rft_cupid=10_1017_S0956792518000037&rfr_iscdi=true |