Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time

The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-03, Vol.138 (12), p.12A533-12A533
Hauptverfasser: Wittmer, J P, Xu, H, Polińska, P, Weysser, F, Baschnagel, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12A533
container_issue 12
container_start_page 12A533
container_title The Journal of chemical physics
container_volume 138
creator Wittmer, J P
Xu, H
Polińska, P
Weysser, F
Baschnagel, J
description The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μ(F)(T) which at constant τ decay monotonously with T following the affine shear elasticity μ(A)(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature T(g) is demonstrated for μF(T) at constant γ. The increase of G below T(g) is reasonably fitted for both models by a continuous cusp singularity, G(T) ∝ (1 - T∕T(g))(1∕2), in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.
doi_str_mv 10.1063/1.4790137
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01517066v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429855398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-71775124d4f4d3c0ce12fbd1ec4606eacb298182dc3f912faab5ec3b49d1008b3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EorePBX8AeQlS03r8iBN2VUUp0pVYFNaWY0_aIDu-2HGl_nty6aUsWY00882ZMzqEvAN2AawVl3Ahdc9A6FdkA6zrG9327DXZMMah6VvWHpHjUn4yxkBz-ZYccaFUqzu5IfXuAW2mMfkaaqFppGWKNdgFPb0PtpRmTDlO8_0ewUDLU1kwlk8UxxHd8mdjSHX2Nj9Rl2Y_LVOaz-kK7TDbpWY8p3b2tNi4C3udZYp4St6MNhQ8O9QT8uPm8_fr22b77cvX66tt40Snl0aD1gq49HKUXjjmEPg4eEAn16fQuoH3HXTcOzH268jaQaETg-w9MNYN4oR8fNZ9sMHs8hRXlybZydxebc2-x0CBZm37CCv74Znd5fSrYllMnIrDEOyMqRYDcj2mlOi7_6NCca47UO0_By6nUjKOLzaAmX14BswhvJV9f5CtQ0T_Qv5NS_wGR5iUVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352278156</pqid></control><display><type>article</type><title>Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wittmer, J P ; Xu, H ; Polińska, P ; Weysser, F ; Baschnagel, J</creator><creatorcontrib>Wittmer, J P ; Xu, H ; Polińska, P ; Weysser, F ; Baschnagel, J</creatorcontrib><description>The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μ(F)(T) which at constant τ decay monotonously with T following the affine shear elasticity μ(A)(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature T(g) is demonstrated for μF(T) at constant γ. The increase of G below T(g) is reasonably fitted for both models by a continuous cusp singularity, G(T) ∝ (1 - T∕T(g))(1∕2), in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4790137</identifier><identifier>PMID: 23556784</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Condensed Matter ; Dynamical systems ; Dynamics ; Fluctuation ; Materials Science ; Mathematical analysis ; Mathematical models ; Physics ; Sampling ; Shear modulus</subject><ispartof>The Journal of chemical physics, 2013-03, Vol.138 (12), p.12A533-12A533</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-71775124d4f4d3c0ce12fbd1ec4606eacb298182dc3f912faab5ec3b49d1008b3</citedby><cites>FETCH-LOGICAL-c387t-71775124d4f4d3c0ce12fbd1ec4606eacb298182dc3f912faab5ec3b49d1008b3</cites><orcidid>0000-0002-3201-2554 ; 0000-0003-2678-3464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23556784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01517066$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmer, J P</creatorcontrib><creatorcontrib>Xu, H</creatorcontrib><creatorcontrib>Polińska, P</creatorcontrib><creatorcontrib>Weysser, F</creatorcontrib><creatorcontrib>Baschnagel, J</creatorcontrib><title>Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μ(F)(T) which at constant τ decay monotonously with T following the affine shear elasticity μ(A)(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature T(g) is demonstrated for μF(T) at constant γ. The increase of G below T(g) is reasonably fitted for both models by a continuous cusp singularity, G(T) ∝ (1 - T∕T(g))(1∕2), in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.</description><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fluctuation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Sampling</subject><subject>Shear modulus</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0EorePBX8AeQlS03r8iBN2VUUp0pVYFNaWY0_aIDu-2HGl_nty6aUsWY00882ZMzqEvAN2AawVl3Ahdc9A6FdkA6zrG9327DXZMMah6VvWHpHjUn4yxkBz-ZYccaFUqzu5IfXuAW2mMfkaaqFppGWKNdgFPb0PtpRmTDlO8_0ewUDLU1kwlk8UxxHd8mdjSHX2Nj9Rl2Y_LVOaz-kK7TDbpWY8p3b2tNi4C3udZYp4St6MNhQ8O9QT8uPm8_fr22b77cvX66tt40Snl0aD1gq49HKUXjjmEPg4eEAn16fQuoH3HXTcOzH268jaQaETg-w9MNYN4oR8fNZ9sMHs8hRXlybZydxebc2-x0CBZm37CCv74Znd5fSrYllMnIrDEOyMqRYDcj2mlOi7_6NCca47UO0_By6nUjKOLzaAmX14BswhvJV9f5CtQ0T_Qv5NS_wGR5iUVA</recordid><startdate>20130328</startdate><enddate>20130328</enddate><creator>Wittmer, J P</creator><creator>Xu, H</creator><creator>Polińska, P</creator><creator>Weysser, F</creator><creator>Baschnagel, J</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3201-2554</orcidid><orcidid>https://orcid.org/0000-0003-2678-3464</orcidid></search><sort><creationdate>20130328</creationdate><title>Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time</title><author>Wittmer, J P ; Xu, H ; Polińska, P ; Weysser, F ; Baschnagel, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-71775124d4f4d3c0ce12fbd1ec4606eacb298182dc3f912faab5ec3b49d1008b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fluctuation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Sampling</topic><topic>Shear modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmer, J P</creatorcontrib><creatorcontrib>Xu, H</creatorcontrib><creatorcontrib>Polińska, P</creatorcontrib><creatorcontrib>Weysser, F</creatorcontrib><creatorcontrib>Baschnagel, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmer, J P</au><au>Xu, H</au><au>Polińska, P</au><au>Weysser, F</au><au>Baschnagel, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-03-28</date><risdate>2013</risdate><volume>138</volume><issue>12</issue><spage>12A533</spage><epage>12A533</epage><pages>12A533-12A533</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μ(F)(T) which at constant τ decay monotonously with T following the affine shear elasticity μ(A)(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature T(g) is demonstrated for μF(T) at constant γ. The increase of G below T(g) is reasonably fitted for both models by a continuous cusp singularity, G(T) ∝ (1 - T∕T(g))(1∕2), in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>23556784</pmid><doi>10.1063/1.4790137</doi><orcidid>https://orcid.org/0000-0002-3201-2554</orcidid><orcidid>https://orcid.org/0000-0003-2678-3464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-03, Vol.138 (12), p.12A533-12A533
issn 0021-9606
1089-7690
language eng
recordid cdi_hal_primary_oai_HAL_hal_01517066v1
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Computer simulation
Condensed Matter
Dynamical systems
Dynamics
Fluctuation
Materials Science
Mathematical analysis
Mathematical models
Physics
Sampling
Shear modulus
title Shear modulus of simulated glass-forming model systems: effects of boundary condition, temperature, and sampling time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20modulus%20of%20simulated%20glass-forming%20model%20systems:%20effects%20of%20boundary%20condition,%20temperature,%20and%20sampling%20time&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wittmer,%20J%20P&rft.date=2013-03-28&rft.volume=138&rft.issue=12&rft.spage=12A533&rft.epage=12A533&rft.pages=12A533-12A533&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4790137&rft_dat=%3Cproquest_hal_p%3E1429855398%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352278156&rft_id=info:pmid/23556784&rfr_iscdi=true