A Grassmann framework for 4D facial shape analysis
In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2016-09, Vol.57, p.21-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | Pattern recognition |
container_volume | 57 |
creator | Alashkar, Taleb Ben Amor, Boulbaba Daoudi, Mohamed Berretti, Stefano |
description | In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as well as its temporal evolution within the same subspace representation. Dictionary learning and sparse coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The obtained results of the proposed approach provide promising results.
•Role of facial shape dynamics in identity recognition.•Effective representation of 3D faces and their dynamics on Grassmann manifolds.•Sparse coding and dictionary learning for 4D faces classification. |
doi_str_mv | 10.1016/j.patcog.2016.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01516373v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320316001084</els_id><sourcerecordid>1816043556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-28d20fbe957cd2bd18c369dff3506c10bf01393a187f1fb762dc390e31ec3ee63</originalsourceid><addsrcrecordid>eNp9UMtOw0AMXCGQKIU_4JAjHBLsOM8LUlWgRarEBc6r7cZLt6RJ2E1B_XtSBXHkZNmeGY9HiGuECAGzu23UqV6371E8dBFQBEgnYoJFTmGKSXwqJgCEIcVA5-LC-y0A5sNiIuJZsHDK-51qmsA4tePv1n0EpnVB8hAYpa2qA79RHQeqUfXBW38pzoyqPV_91ql4e3p8nS_D1cvieT5bhTqhsg_joorBrLlMc13F6woLTVlZGUMpZBphbQaXJanBpUGzzrO40lQCE7Im5oym4nbU3ahads7ulDvIVlm5nK3kcQaYYkY5feGAvRmxnWs_9-x7ubNec12rhtu9l1hgBgml6VE2GaHatd47Nn_aCPIYp9zKMU55jFMCDYdooN2PNB5e_rLspNeWG82Vdax7WbX2f4Ef9IF9jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816043556</pqid></control><display><type>article</type><title>A Grassmann framework for 4D facial shape analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alashkar, Taleb ; Ben Amor, Boulbaba ; Daoudi, Mohamed ; Berretti, Stefano</creator><creatorcontrib>Alashkar, Taleb ; Ben Amor, Boulbaba ; Daoudi, Mohamed ; Berretti, Stefano</creatorcontrib><description>In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as well as its temporal evolution within the same subspace representation. Dictionary learning and sparse coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The obtained results of the proposed approach provide promising results.
•Role of facial shape dynamics in identity recognition.•Effective representation of 3D faces and their dynamics on Grassmann manifolds.•Sparse coding and dictionary learning for 4D faces classification.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2016.03.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>4D face recognition ; Computer Science ; Computer Vision and Pattern Recognition ; Curvature-maps ; Dictionary learning ; Dynamic tests ; Evolution ; Face recognition ; Facial ; Grassmann manifold ; Learning ; Representations ; Sparse coding ; Subspaces ; Three dimensional</subject><ispartof>Pattern recognition, 2016-09, Vol.57, p.21-30</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-28d20fbe957cd2bd18c369dff3506c10bf01393a187f1fb762dc390e31ec3ee63</citedby><cites>FETCH-LOGICAL-c439t-28d20fbe957cd2bd18c369dff3506c10bf01393a187f1fb762dc390e31ec3ee63</cites><orcidid>0000-0003-3057-9538 ; 0000-0002-4176-9305 ; 0000-0003-4219-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2016.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01516373$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alashkar, Taleb</creatorcontrib><creatorcontrib>Ben Amor, Boulbaba</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Berretti, Stefano</creatorcontrib><title>A Grassmann framework for 4D facial shape analysis</title><title>Pattern recognition</title><description>In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as well as its temporal evolution within the same subspace representation. Dictionary learning and sparse coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The obtained results of the proposed approach provide promising results.
•Role of facial shape dynamics in identity recognition.•Effective representation of 3D faces and their dynamics on Grassmann manifolds.•Sparse coding and dictionary learning for 4D faces classification.</description><subject>4D face recognition</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Curvature-maps</subject><subject>Dictionary learning</subject><subject>Dynamic tests</subject><subject>Evolution</subject><subject>Face recognition</subject><subject>Facial</subject><subject>Grassmann manifold</subject><subject>Learning</subject><subject>Representations</subject><subject>Sparse coding</subject><subject>Subspaces</subject><subject>Three dimensional</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOw0AMXCGQKIU_4JAjHBLsOM8LUlWgRarEBc6r7cZLt6RJ2E1B_XtSBXHkZNmeGY9HiGuECAGzu23UqV6371E8dBFQBEgnYoJFTmGKSXwqJgCEIcVA5-LC-y0A5sNiIuJZsHDK-51qmsA4tePv1n0EpnVB8hAYpa2qA79RHQeqUfXBW38pzoyqPV_91ql4e3p8nS_D1cvieT5bhTqhsg_joorBrLlMc13F6woLTVlZGUMpZBphbQaXJanBpUGzzrO40lQCE7Im5oym4nbU3ahads7ulDvIVlm5nK3kcQaYYkY5feGAvRmxnWs_9-x7ubNec12rhtu9l1hgBgml6VE2GaHatd47Nn_aCPIYp9zKMU55jFMCDYdooN2PNB5e_rLspNeWG82Vdax7WbX2f4Ef9IF9jg</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Alashkar, Taleb</creator><creator>Ben Amor, Boulbaba</creator><creator>Daoudi, Mohamed</creator><creator>Berretti, Stefano</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3057-9538</orcidid><orcidid>https://orcid.org/0000-0002-4176-9305</orcidid><orcidid>https://orcid.org/0000-0003-4219-7860</orcidid></search><sort><creationdate>201609</creationdate><title>A Grassmann framework for 4D facial shape analysis</title><author>Alashkar, Taleb ; Ben Amor, Boulbaba ; Daoudi, Mohamed ; Berretti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-28d20fbe957cd2bd18c369dff3506c10bf01393a187f1fb762dc390e31ec3ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>4D face recognition</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Curvature-maps</topic><topic>Dictionary learning</topic><topic>Dynamic tests</topic><topic>Evolution</topic><topic>Face recognition</topic><topic>Facial</topic><topic>Grassmann manifold</topic><topic>Learning</topic><topic>Representations</topic><topic>Sparse coding</topic><topic>Subspaces</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alashkar, Taleb</creatorcontrib><creatorcontrib>Ben Amor, Boulbaba</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Berretti, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alashkar, Taleb</au><au>Ben Amor, Boulbaba</au><au>Daoudi, Mohamed</au><au>Berretti, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Grassmann framework for 4D facial shape analysis</atitle><jtitle>Pattern recognition</jtitle><date>2016-09</date><risdate>2016</risdate><volume>57</volume><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as well as its temporal evolution within the same subspace representation. Dictionary learning and sparse coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The obtained results of the proposed approach provide promising results.
•Role of facial shape dynamics in identity recognition.•Effective representation of 3D faces and their dynamics on Grassmann manifolds.•Sparse coding and dictionary learning for 4D faces classification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2016.03.013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3057-9538</orcidid><orcidid>https://orcid.org/0000-0002-4176-9305</orcidid><orcidid>https://orcid.org/0000-0003-4219-7860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2016-09, Vol.57, p.21-30 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01516373v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | 4D face recognition Computer Science Computer Vision and Pattern Recognition Curvature-maps Dictionary learning Dynamic tests Evolution Face recognition Facial Grassmann manifold Learning Representations Sparse coding Subspaces Three dimensional |
title | A Grassmann framework for 4D facial shape analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Grassmann%20framework%20for%204D%20facial%20shape%20analysis&rft.jtitle=Pattern%20recognition&rft.au=Alashkar,%20Taleb&rft.date=2016-09&rft.volume=57&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2016.03.013&rft_dat=%3Cproquest_hal_p%3E1816043556%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816043556&rft_id=info:pmid/&rft_els_id=S0031320316001084&rfr_iscdi=true |