Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments
Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2014-10, Vol.47 (20), p.7243-7250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7250 |
---|---|
container_issue | 20 |
container_start_page | 7243 |
container_title | Macromolecules |
container_volume | 47 |
creator | Long, Rong Mayumi, Koichi Creton, Costantino Narita, Tetsuharu Hui, Chung-Yuen |
description | Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds. |
doi_str_mv | 10.1021/ma501290h |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01516035v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c745779757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEznac2GylLS1SJAbaObokDklJnchuK_rvSVXULkwnnb737t4j5J7BEwPOntcogXEN1QUZMMkhkErISzIA4GGguY6vyY33KwDGZCgGZLmo14ZOTGdsYeyGvpoKd3XraFtSpJMtNnTsWu-DpLbf9NM0ZTA32NT2i85M80IXlWndnqIt6PSnM653sxt_S65KbLy5-5tDsnybLsbzIPmYvY9HSYAigk2ghMlKoVUW9Z_ykEtt8kxrZYowDyWXWZxBwYXCDGNtYsVyHqOQgiNkoYBCDMnj0bfCJu364-j2aYt1Oh8l6WEHTLIIhNyxM5sf8jhTngQM0kN36am7nn04sh36HJvSoc1rfxJwpTWPI3XmMPfpqt0626f9x-8X-O13vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><source>American Chemical Society Web Editions</source><creator>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</creator><creatorcontrib>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</creatorcontrib><description>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma501290h</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed Matter ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Physics ; Properties and characterization ; Soft Condensed Matter ; Solution and gel properties</subject><ispartof>Macromolecules, 2014-10, Vol.47 (20), p.7243-7250</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</citedby><cites>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</cites><orcidid>0000-0002-0177-9680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma501290h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma501290h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28992768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01516035$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Rong</creatorcontrib><creatorcontrib>Mayumi, Koichi</creatorcontrib><creatorcontrib>Creton, Costantino</creatorcontrib><creatorcontrib>Narita, Tetsuharu</creatorcontrib><creatorcontrib>Hui, Chung-Yuen</creatorcontrib><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</description><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Properties and characterization</subject><subject>Soft Condensed Matter</subject><subject>Solution and gel properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEznac2GylLS1SJAbaObokDklJnchuK_rvSVXULkwnnb737t4j5J7BEwPOntcogXEN1QUZMMkhkErISzIA4GGguY6vyY33KwDGZCgGZLmo14ZOTGdsYeyGvpoKd3XraFtSpJMtNnTsWu-DpLbf9NM0ZTA32NT2i85M80IXlWndnqIt6PSnM653sxt_S65KbLy5-5tDsnybLsbzIPmYvY9HSYAigk2ghMlKoVUW9Z_ykEtt8kxrZYowDyWXWZxBwYXCDGNtYsVyHqOQgiNkoYBCDMnj0bfCJu364-j2aYt1Oh8l6WEHTLIIhNyxM5sf8jhTngQM0kN36am7nn04sh36HJvSoc1rfxJwpTWPI3XmMPfpqt0626f9x-8X-O13vQ</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Long, Rong</creator><creator>Mayumi, Koichi</creator><creator>Creton, Costantino</creator><creator>Narita, Tetsuharu</creator><creator>Hui, Chung-Yuen</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0177-9680</orcidid></search><sort><creationdate>20141028</creationdate><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><author>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Properties and characterization</topic><topic>Soft Condensed Matter</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Rong</creatorcontrib><creatorcontrib>Mayumi, Koichi</creatorcontrib><creatorcontrib>Creton, Costantino</creatorcontrib><creatorcontrib>Narita, Tetsuharu</creatorcontrib><creatorcontrib>Hui, Chung-Yuen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Rong</au><au>Mayumi, Koichi</au><au>Creton, Costantino</au><au>Narita, Tetsuharu</au><au>Hui, Chung-Yuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2014-10-28</date><risdate>2014</risdate><volume>47</volume><issue>20</issue><spage>7243</spage><epage>7250</epage><pages>7243-7250</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma501290h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0177-9680</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2014-10, Vol.47 (20), p.7243-7250 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01516035v1 |
source | American Chemical Society Web Editions |
subjects | Applied sciences Condensed Matter Exact sciences and technology Organic polymers Physicochemistry of polymers Physics Properties and characterization Soft Condensed Matter Solution and gel properties |
title | Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Dependent%20Behavior%20of%20a%20Dual%20Cross-Link%20Self-Healing%20Gel:%20Theory%20and%20Experiments&rft.jtitle=Macromolecules&rft.au=Long,%20Rong&rft.date=2014-10-28&rft.volume=47&rft.issue=20&rft.spage=7243&rft.epage=7250&rft.pages=7243-7250&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma501290h&rft_dat=%3Cacs_hal_p%3Ec745779757%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |