Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments

Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2014-10, Vol.47 (20), p.7243-7250
Hauptverfasser: Long, Rong, Mayumi, Koichi, Creton, Costantino, Narita, Tetsuharu, Hui, Chung-Yuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7250
container_issue 20
container_start_page 7243
container_title Macromolecules
container_volume 47
creator Long, Rong
Mayumi, Koichi
Creton, Costantino
Narita, Tetsuharu
Hui, Chung-Yuen
description Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.
doi_str_mv 10.1021/ma501290h
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01516035v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c745779757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEznac2GylLS1SJAbaObokDklJnchuK_rvSVXULkwnnb737t4j5J7BEwPOntcogXEN1QUZMMkhkErISzIA4GGguY6vyY33KwDGZCgGZLmo14ZOTGdsYeyGvpoKd3XraFtSpJMtNnTsWu-DpLbf9NM0ZTA32NT2i85M80IXlWndnqIt6PSnM653sxt_S65KbLy5-5tDsnybLsbzIPmYvY9HSYAigk2ghMlKoVUW9Z_ykEtt8kxrZYowDyWXWZxBwYXCDGNtYsVyHqOQgiNkoYBCDMnj0bfCJu364-j2aYt1Oh8l6WEHTLIIhNyxM5sf8jhTngQM0kN36am7nn04sh36HJvSoc1rfxJwpTWPI3XmMPfpqt0626f9x-8X-O13vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><source>American Chemical Society Web Editions</source><creator>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</creator><creatorcontrib>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</creatorcontrib><description>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma501290h</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed Matter ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Physics ; Properties and characterization ; Soft Condensed Matter ; Solution and gel properties</subject><ispartof>Macromolecules, 2014-10, Vol.47 (20), p.7243-7250</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</citedby><cites>FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</cites><orcidid>0000-0002-0177-9680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma501290h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma501290h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28992768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01516035$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Rong</creatorcontrib><creatorcontrib>Mayumi, Koichi</creatorcontrib><creatorcontrib>Creton, Costantino</creatorcontrib><creatorcontrib>Narita, Tetsuharu</creatorcontrib><creatorcontrib>Hui, Chung-Yuen</creatorcontrib><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</description><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Properties and characterization</subject><subject>Soft Condensed Matter</subject><subject>Solution and gel properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEznac2GylLS1SJAbaObokDklJnchuK_rvSVXULkwnnb737t4j5J7BEwPOntcogXEN1QUZMMkhkErISzIA4GGguY6vyY33KwDGZCgGZLmo14ZOTGdsYeyGvpoKd3XraFtSpJMtNnTsWu-DpLbf9NM0ZTA32NT2i85M80IXlWndnqIt6PSnM653sxt_S65KbLy5-5tDsnybLsbzIPmYvY9HSYAigk2ghMlKoVUW9Z_ykEtt8kxrZYowDyWXWZxBwYXCDGNtYsVyHqOQgiNkoYBCDMnj0bfCJu364-j2aYt1Oh8l6WEHTLIIhNyxM5sf8jhTngQM0kN36am7nn04sh36HJvSoc1rfxJwpTWPI3XmMPfpqt0626f9x-8X-O13vQ</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Long, Rong</creator><creator>Mayumi, Koichi</creator><creator>Creton, Costantino</creator><creator>Narita, Tetsuharu</creator><creator>Hui, Chung-Yuen</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0177-9680</orcidid></search><sort><creationdate>20141028</creationdate><title>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</title><author>Long, Rong ; Mayumi, Koichi ; Creton, Costantino ; Narita, Tetsuharu ; Hui, Chung-Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-83ebf398b652024259ecb998ed4c4525b7b0d238aba79e781c27a3532a0b430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Properties and characterization</topic><topic>Soft Condensed Matter</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Rong</creatorcontrib><creatorcontrib>Mayumi, Koichi</creatorcontrib><creatorcontrib>Creton, Costantino</creatorcontrib><creatorcontrib>Narita, Tetsuharu</creatorcontrib><creatorcontrib>Hui, Chung-Yuen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Rong</au><au>Mayumi, Koichi</au><au>Creton, Costantino</au><au>Narita, Tetsuharu</au><au>Hui, Chung-Yuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2014-10-28</date><risdate>2014</risdate><volume>47</volume><issue>20</issue><spage>7243</spage><epage>7250</epage><pages>7243-7250</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Recent experiments have shown that hydrogels with enhanced toughness can be synthesized by incorporating self-healing physical cross-links in a chemically cross-linked gel network. These gels exhibit rate dependent mechanical behavior, suggesting that improved mechanical properties are closely tied to the breaking and reattaching of temporary cross-links in the gel network. In this work, the connection between rate dependent mechanical behavior and kinetics of breaking and reattachment of temporary cross-links is quantified using a three-dimensional finite strain constitutive model. The parameters of the model are fitted using relaxation and constant strain rate tests in uniaxial tension of a model dual-cross-link gel. The stress versus time curves of more complex strain histories, involving loading followed by unloading at different rates, is successfully and quantitatively predicted by our model. Such modeling strategy combining physically based kinetics and three-dimensional large strain mechanics shows great promise for quantitative modeling of soft biological tissues and synthetic counterparts containing dynamic bonds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma501290h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0177-9680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2014-10, Vol.47 (20), p.7243-7250
issn 0024-9297
1520-5835
language eng
recordid cdi_hal_primary_oai_HAL_hal_01516035v1
source American Chemical Society Web Editions
subjects Applied sciences
Condensed Matter
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Physics
Properties and characterization
Soft Condensed Matter
Solution and gel properties
title Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Dependent%20Behavior%20of%20a%20Dual%20Cross-Link%20Self-Healing%20Gel:%20Theory%20and%20Experiments&rft.jtitle=Macromolecules&rft.au=Long,%20Rong&rft.date=2014-10-28&rft.volume=47&rft.issue=20&rft.spage=7243&rft.epage=7250&rft.pages=7243-7250&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma501290h&rft_dat=%3Cacs_hal_p%3Ec745779757%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true