Instabilities in thin films on hyperelastic substrates by 3D finite elements

[Display omitted] •A 3D fully nonlinear film/substrate model is developed by advanced finite element methods.•Automatic Differentiation is applied to improve the ease of implementation of Asymptotic Numerical Method.•The established framework is able to consider various hyperelastic laws automatical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2015-09, Vol.69-70, p.71-85
Hauptverfasser: Xu, Fan, Koutsawa, Yao, Potier-Ferry, Michel, Belouettar, Salim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 71
container_title International journal of solids and structures
container_volume 69-70
creator Xu, Fan
Koutsawa, Yao
Potier-Ferry, Michel
Belouettar, Salim
description [Display omitted] •A 3D fully nonlinear film/substrate model is developed by advanced finite element methods.•Automatic Differentiation is applied to improve the ease of implementation of Asymptotic Numerical Method.•The established framework is able to consider various hyperelastic laws automatically.•The need of finite strain modeling is first discussed according to the stiffness ratio.•Several types of 3D wrinkling patterns have been observed in the post-buckling evolution. Spatial pattern formation in thin films on rubberlike compliant substrates is investigated based on a fully nonlinear 3D finite element model, associating nonlinear shell formulation for the film and finite strain hyperelasticity for the substrate. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to predict a sequence of secondary bifurcations on their post-buckling evolution path. Automatic Differentiation (AD) is employed to improve the ease of the ANM implementation through an operator overloading, which allows one to introduce various potential energy functions of hyperelasticity in quite a simple way. Typical post-buckling patterns include sinusoidal and checkerboard, with possible spatial modulations, localizations and boundary effects. The proposed finite element procedure allows accurately describing these bifurcation portraits by taking into account various finite strain hyperelastic laws from the quantitative standpoint. The occurrence and evolution of 3D instability modes including fold-like patterns will be highlighted. The need of finite strain modeling is also discussed according to the stiffness ratio of Young’s modulus.
doi_str_mv 10.1016/j.ijsolstr.2015.06.007
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01514676v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768315002711</els_id><sourcerecordid>S0020768315002711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-3932948d78c3c6296466c927dbf1ff02aa6969ea115ba70c114510c9e6ae34273</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCihXDglrO7HrG1X5aaVIXOBsOc5GdZQmlW0q9e1xVeDKZVdazcxqPkLuKRQUqHjsC9eHaQjRFwxoVYAoAOQFmdGFVDmjpbgkMwAGuRQLfk1uQugBoOQKZqTejCGaxg0uOgyZG7O4TaNzwy5k05htj3v0OJgQnc3CV5O-mJiEzTHjz0k2uogZDrjDMYZbctWZIeDdz56Tz9eXj9U6r9_fNqtlnduKQ8y54kyVi1YuLLeCKVEKYRWTbdPRrgNmjFBCoaG0aowES2lZUbAKhUFeMsnn5OGcuzWD3nu3M_6oJ-P0elnr0y1hSLWlONCkFWet9VMIHrs_AwV94qd7_ctPn_hpEDrxS8ansxFTk4NDr4N1OFpsnUcbdTu5_yK-AfIEfGs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Instabilities in thin films on hyperelastic substrates by 3D finite elements</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Fan ; Koutsawa, Yao ; Potier-Ferry, Michel ; Belouettar, Salim</creator><creatorcontrib>Xu, Fan ; Koutsawa, Yao ; Potier-Ferry, Michel ; Belouettar, Salim</creatorcontrib><description>[Display omitted] •A 3D fully nonlinear film/substrate model is developed by advanced finite element methods.•Automatic Differentiation is applied to improve the ease of implementation of Asymptotic Numerical Method.•The established framework is able to consider various hyperelastic laws automatically.•The need of finite strain modeling is first discussed according to the stiffness ratio.•Several types of 3D wrinkling patterns have been observed in the post-buckling evolution. Spatial pattern formation in thin films on rubberlike compliant substrates is investigated based on a fully nonlinear 3D finite element model, associating nonlinear shell formulation for the film and finite strain hyperelasticity for the substrate. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to predict a sequence of secondary bifurcations on their post-buckling evolution path. Automatic Differentiation (AD) is employed to improve the ease of the ANM implementation through an operator overloading, which allows one to introduce various potential energy functions of hyperelasticity in quite a simple way. Typical post-buckling patterns include sinusoidal and checkerboard, with possible spatial modulations, localizations and boundary effects. The proposed finite element procedure allows accurately describing these bifurcation portraits by taking into account various finite strain hyperelastic laws from the quantitative standpoint. The occurrence and evolution of 3D instability modes including fold-like patterns will be highlighted. The need of finite strain modeling is also discussed according to the stiffness ratio of Young’s modulus.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2015.06.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic Differentiation ; Bifurcation ; Chemical Sciences ; Engineering Sciences ; Material chemistry ; Neo-Hookean hyperelasticity ; Path-following technique ; Post-buckling ; Wrinkling</subject><ispartof>International journal of solids and structures, 2015-09, Vol.69-70, p.71-85</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-3932948d78c3c6296466c927dbf1ff02aa6969ea115ba70c114510c9e6ae34273</citedby><cites>FETCH-LOGICAL-c530t-3932948d78c3c6296466c927dbf1ff02aa6969ea115ba70c114510c9e6ae34273</cites><orcidid>0000-0002-9016-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2015.06.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01514676$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Koutsawa, Yao</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><title>Instabilities in thin films on hyperelastic substrates by 3D finite elements</title><title>International journal of solids and structures</title><description>[Display omitted] •A 3D fully nonlinear film/substrate model is developed by advanced finite element methods.•Automatic Differentiation is applied to improve the ease of implementation of Asymptotic Numerical Method.•The established framework is able to consider various hyperelastic laws automatically.•The need of finite strain modeling is first discussed according to the stiffness ratio.•Several types of 3D wrinkling patterns have been observed in the post-buckling evolution. Spatial pattern formation in thin films on rubberlike compliant substrates is investigated based on a fully nonlinear 3D finite element model, associating nonlinear shell formulation for the film and finite strain hyperelasticity for the substrate. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to predict a sequence of secondary bifurcations on their post-buckling evolution path. Automatic Differentiation (AD) is employed to improve the ease of the ANM implementation through an operator overloading, which allows one to introduce various potential energy functions of hyperelasticity in quite a simple way. Typical post-buckling patterns include sinusoidal and checkerboard, with possible spatial modulations, localizations and boundary effects. The proposed finite element procedure allows accurately describing these bifurcation portraits by taking into account various finite strain hyperelastic laws from the quantitative standpoint. The occurrence and evolution of 3D instability modes including fold-like patterns will be highlighted. The need of finite strain modeling is also discussed according to the stiffness ratio of Young’s modulus.</description><subject>Automatic Differentiation</subject><subject>Bifurcation</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Material chemistry</subject><subject>Neo-Hookean hyperelasticity</subject><subject>Path-following technique</subject><subject>Post-buckling</subject><subject>Wrinkling</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCihXDglrO7HrG1X5aaVIXOBsOc5GdZQmlW0q9e1xVeDKZVdazcxqPkLuKRQUqHjsC9eHaQjRFwxoVYAoAOQFmdGFVDmjpbgkMwAGuRQLfk1uQugBoOQKZqTejCGaxg0uOgyZG7O4TaNzwy5k05htj3v0OJgQnc3CV5O-mJiEzTHjz0k2uogZDrjDMYZbctWZIeDdz56Tz9eXj9U6r9_fNqtlnduKQ8y54kyVi1YuLLeCKVEKYRWTbdPRrgNmjFBCoaG0aowES2lZUbAKhUFeMsnn5OGcuzWD3nu3M_6oJ-P0elnr0y1hSLWlONCkFWet9VMIHrs_AwV94qd7_ctPn_hpEDrxS8ansxFTk4NDr4N1OFpsnUcbdTu5_yK-AfIEfGs</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Xu, Fan</creator><creator>Koutsawa, Yao</creator><creator>Potier-Ferry, Michel</creator><creator>Belouettar, Salim</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9016-1531</orcidid></search><sort><creationdate>20150901</creationdate><title>Instabilities in thin films on hyperelastic substrates by 3D finite elements</title><author>Xu, Fan ; Koutsawa, Yao ; Potier-Ferry, Michel ; Belouettar, Salim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-3932948d78c3c6296466c927dbf1ff02aa6969ea115ba70c114510c9e6ae34273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automatic Differentiation</topic><topic>Bifurcation</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Material chemistry</topic><topic>Neo-Hookean hyperelasticity</topic><topic>Path-following technique</topic><topic>Post-buckling</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Koutsawa, Yao</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Fan</au><au>Koutsawa, Yao</au><au>Potier-Ferry, Michel</au><au>Belouettar, Salim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instabilities in thin films on hyperelastic substrates by 3D finite elements</atitle><jtitle>International journal of solids and structures</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>69-70</volume><spage>71</spage><epage>85</epage><pages>71-85</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>[Display omitted] •A 3D fully nonlinear film/substrate model is developed by advanced finite element methods.•Automatic Differentiation is applied to improve the ease of implementation of Asymptotic Numerical Method.•The established framework is able to consider various hyperelastic laws automatically.•The need of finite strain modeling is first discussed according to the stiffness ratio.•Several types of 3D wrinkling patterns have been observed in the post-buckling evolution. Spatial pattern formation in thin films on rubberlike compliant substrates is investigated based on a fully nonlinear 3D finite element model, associating nonlinear shell formulation for the film and finite strain hyperelasticity for the substrate. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to predict a sequence of secondary bifurcations on their post-buckling evolution path. Automatic Differentiation (AD) is employed to improve the ease of the ANM implementation through an operator overloading, which allows one to introduce various potential energy functions of hyperelasticity in quite a simple way. Typical post-buckling patterns include sinusoidal and checkerboard, with possible spatial modulations, localizations and boundary effects. The proposed finite element procedure allows accurately describing these bifurcation portraits by taking into account various finite strain hyperelastic laws from the quantitative standpoint. The occurrence and evolution of 3D instability modes including fold-like patterns will be highlighted. The need of finite strain modeling is also discussed according to the stiffness ratio of Young’s modulus.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2015.06.007</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9016-1531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2015-09, Vol.69-70, p.71-85
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_01514676v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automatic Differentiation
Bifurcation
Chemical Sciences
Engineering Sciences
Material chemistry
Neo-Hookean hyperelasticity
Path-following technique
Post-buckling
Wrinkling
title Instabilities in thin films on hyperelastic substrates by 3D finite elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instabilities%20in%20thin%20films%20on%20hyperelastic%20substrates%20by%203D%20finite%20elements&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Xu,%20Fan&rft.date=2015-09-01&rft.volume=69-70&rft.spage=71&rft.epage=85&rft.pages=71-85&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2015.06.007&rft_dat=%3Celsevier_hal_p%3ES0020768315002711%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020768315002711&rfr_iscdi=true