2D foams above the jamming transition: Deformation matters

[Display omitted] •2D foams close to wet limit are not well described by soft disks due to deformability.•Average contact number in a 2D foam increases linearly with the gas/packing fraction.•Linear variation of contact number is consistent with the distributions of separation. Jammed soft matter sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2017-12, Vol.534, p.52-57
Hauptverfasser: Winkelmann, J., Dunne, F.F., Langlois, V.J., Möbius, M.E., Weaire, D., Hutzler, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 52
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 534
creator Winkelmann, J.
Dunne, F.F.
Langlois, V.J.
Möbius, M.E.
Weaire, D.
Hutzler, S.
description [Display omitted] •2D foams close to wet limit are not well described by soft disks due to deformability.•Average contact number in a 2D foam increases linearly with the gas/packing fraction.•Linear variation of contact number is consistent with the distributions of separation. Jammed soft matter systems are often modelled as dense packings of overlapping soft spheres, thus ignoring particle deformation. For 2D (and 3D) soft disks packings, close to the critical packing fraction ϕc, this results in an increase of the average contact number Z with a square root in ϕ−ϕc. Using the program PLAT, we find that in the case of idealised two-dimensional foams, close to the wet limit, Z increases linearly with ϕ−ϕc, where ϕ is the gas fraction. This result is consistent with the different distributions of separations for soft disks and foams at the critical packing fraction. Thus, 2D foams close to the wet limit are not well described as random packings of soft disks, since bubbles in a foam are deformable and adjust their shape. This is not captured by overlapping circular disks.
doi_str_mv 10.1016/j.colsurfa.2017.03.058
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01508061v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775717303187</els_id><sourcerecordid>oai_HAL_hal_01508061v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-a08a2e98b3539c1421d488b242ec1060ecc9f567ec3594e4190a1e3c2507b5333</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF1CuHBLWrzjuiao8ilSJC5wtx91QR02M7FCJf0-iAldOo13NjHY_Qq4pFBRoedsWLuzTZ2xswYCqAngBsjohM1opngsu9SmZgWYqV0qqc3KRUgsAQio9Iwt2nzXBdimzdThgNuwwa23X-f49G6Ltkx986BfZPTYhdnYaslEGjOmSnDV2n_DqR-fk7fHhdbXONy9Pz6vlJndciyG3UFmGuqq55NpRwehWVFXNBENHoQR0TjeyVOjGSwUKqsFS5I5JULXknM_JzbF3Z_fmI_rOxi8TrDfr5cZMO6ASKijpgY7e8uh1MaQUsfkLUDATLdOaX1pmomWAm5HWGLw7BnH85OAxmuQ89g63PqIbzDb4_yq-AWWTdRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>2D foams above the jamming transition: Deformation matters</title><source>Elsevier ScienceDirect Journals</source><creator>Winkelmann, J. ; Dunne, F.F. ; Langlois, V.J. ; Möbius, M.E. ; Weaire, D. ; Hutzler, S.</creator><creatorcontrib>Winkelmann, J. ; Dunne, F.F. ; Langlois, V.J. ; Möbius, M.E. ; Weaire, D. ; Hutzler, S.</creatorcontrib><description>[Display omitted] •2D foams close to wet limit are not well described by soft disks due to deformability.•Average contact number in a 2D foam increases linearly with the gas/packing fraction.•Linear variation of contact number is consistent with the distributions of separation. Jammed soft matter systems are often modelled as dense packings of overlapping soft spheres, thus ignoring particle deformation. For 2D (and 3D) soft disks packings, close to the critical packing fraction ϕc, this results in an increase of the average contact number Z with a square root in ϕ−ϕc. Using the program PLAT, we find that in the case of idealised two-dimensional foams, close to the wet limit, Z increases linearly with ϕ−ϕc, where ϕ is the gas fraction. This result is consistent with the different distributions of separations for soft disks and foams at the critical packing fraction. Thus, 2D foams close to the wet limit are not well described as random packings of soft disks, since bubbles in a foam are deformable and adjust their shape. This is not captured by overlapping circular disks.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2017.03.058</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>2D foam simulation ; Average contact number ; Bubble model ; Condensed Matter ; Fluid mechanics ; Jamming ; Mechanics ; Particle deformation ; Physics ; Soft Condensed Matter ; Soft disks</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2017-12, Vol.534, p.52-57</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-a08a2e98b3539c1421d488b242ec1060ecc9f567ec3594e4190a1e3c2507b5333</citedby><cites>FETCH-LOGICAL-c394t-a08a2e98b3539c1421d488b242ec1060ecc9f567ec3594e4190a1e3c2507b5333</cites><orcidid>0000-0003-1573-1597 ; 0000-0003-0743-1252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927775717303187$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01508061$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Winkelmann, J.</creatorcontrib><creatorcontrib>Dunne, F.F.</creatorcontrib><creatorcontrib>Langlois, V.J.</creatorcontrib><creatorcontrib>Möbius, M.E.</creatorcontrib><creatorcontrib>Weaire, D.</creatorcontrib><creatorcontrib>Hutzler, S.</creatorcontrib><title>2D foams above the jamming transition: Deformation matters</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>[Display omitted] •2D foams close to wet limit are not well described by soft disks due to deformability.•Average contact number in a 2D foam increases linearly with the gas/packing fraction.•Linear variation of contact number is consistent with the distributions of separation. Jammed soft matter systems are often modelled as dense packings of overlapping soft spheres, thus ignoring particle deformation. For 2D (and 3D) soft disks packings, close to the critical packing fraction ϕc, this results in an increase of the average contact number Z with a square root in ϕ−ϕc. Using the program PLAT, we find that in the case of idealised two-dimensional foams, close to the wet limit, Z increases linearly with ϕ−ϕc, where ϕ is the gas fraction. This result is consistent with the different distributions of separations for soft disks and foams at the critical packing fraction. Thus, 2D foams close to the wet limit are not well described as random packings of soft disks, since bubbles in a foam are deformable and adjust their shape. This is not captured by overlapping circular disks.</description><subject>2D foam simulation</subject><subject>Average contact number</subject><subject>Bubble model</subject><subject>Condensed Matter</subject><subject>Fluid mechanics</subject><subject>Jamming</subject><subject>Mechanics</subject><subject>Particle deformation</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Soft disks</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF1CuHBLWrzjuiao8ilSJC5wtx91QR02M7FCJf0-iAldOo13NjHY_Qq4pFBRoedsWLuzTZ2xswYCqAngBsjohM1opngsu9SmZgWYqV0qqc3KRUgsAQio9Iwt2nzXBdimzdThgNuwwa23X-f49G6Ltkx986BfZPTYhdnYaslEGjOmSnDV2n_DqR-fk7fHhdbXONy9Pz6vlJndciyG3UFmGuqq55NpRwehWVFXNBENHoQR0TjeyVOjGSwUKqsFS5I5JULXknM_JzbF3Z_fmI_rOxi8TrDfr5cZMO6ASKijpgY7e8uh1MaQUsfkLUDATLdOaX1pmomWAm5HWGLw7BnH85OAxmuQ89g63PqIbzDb4_yq-AWWTdRg</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Winkelmann, J.</creator><creator>Dunne, F.F.</creator><creator>Langlois, V.J.</creator><creator>Möbius, M.E.</creator><creator>Weaire, D.</creator><creator>Hutzler, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1573-1597</orcidid><orcidid>https://orcid.org/0000-0003-0743-1252</orcidid></search><sort><creationdate>20171205</creationdate><title>2D foams above the jamming transition: Deformation matters</title><author>Winkelmann, J. ; Dunne, F.F. ; Langlois, V.J. ; Möbius, M.E. ; Weaire, D. ; Hutzler, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-a08a2e98b3539c1421d488b242ec1060ecc9f567ec3594e4190a1e3c2507b5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2D foam simulation</topic><topic>Average contact number</topic><topic>Bubble model</topic><topic>Condensed Matter</topic><topic>Fluid mechanics</topic><topic>Jamming</topic><topic>Mechanics</topic><topic>Particle deformation</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Soft disks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkelmann, J.</creatorcontrib><creatorcontrib>Dunne, F.F.</creatorcontrib><creatorcontrib>Langlois, V.J.</creatorcontrib><creatorcontrib>Möbius, M.E.</creatorcontrib><creatorcontrib>Weaire, D.</creatorcontrib><creatorcontrib>Hutzler, S.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkelmann, J.</au><au>Dunne, F.F.</au><au>Langlois, V.J.</au><au>Möbius, M.E.</au><au>Weaire, D.</au><au>Hutzler, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D foams above the jamming transition: Deformation matters</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2017-12-05</date><risdate>2017</risdate><volume>534</volume><spage>52</spage><epage>57</epage><pages>52-57</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>[Display omitted] •2D foams close to wet limit are not well described by soft disks due to deformability.•Average contact number in a 2D foam increases linearly with the gas/packing fraction.•Linear variation of contact number is consistent with the distributions of separation. Jammed soft matter systems are often modelled as dense packings of overlapping soft spheres, thus ignoring particle deformation. For 2D (and 3D) soft disks packings, close to the critical packing fraction ϕc, this results in an increase of the average contact number Z with a square root in ϕ−ϕc. Using the program PLAT, we find that in the case of idealised two-dimensional foams, close to the wet limit, Z increases linearly with ϕ−ϕc, where ϕ is the gas fraction. This result is consistent with the different distributions of separations for soft disks and foams at the critical packing fraction. Thus, 2D foams close to the wet limit are not well described as random packings of soft disks, since bubbles in a foam are deformable and adjust their shape. This is not captured by overlapping circular disks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2017.03.058</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1573-1597</orcidid><orcidid>https://orcid.org/0000-0003-0743-1252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2017-12, Vol.534, p.52-57
issn 0927-7757
1873-4359
language eng
recordid cdi_hal_primary_oai_HAL_hal_01508061v1
source Elsevier ScienceDirect Journals
subjects 2D foam simulation
Average contact number
Bubble model
Condensed Matter
Fluid mechanics
Jamming
Mechanics
Particle deformation
Physics
Soft Condensed Matter
Soft disks
title 2D foams above the jamming transition: Deformation matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20foams%20above%20the%20jamming%20transition:%20Deformation%20matters&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Winkelmann,%20J.&rft.date=2017-12-05&rft.volume=534&rft.spage=52&rft.epage=57&rft.pages=52-57&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2017.03.058&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01508061v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927775717303187&rfr_iscdi=true