Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial
The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2017-05, Vol.52 (10), p.5503-5510 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5510 |
---|---|
container_issue | 10 |
container_start_page | 5503 |
container_title | Journal of materials science |
container_volume | 52 |
creator | Sadecka, K. Berger, M. H. Orlinski, K. Jozwik, I. Pawlak, D. A. |
description | The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and utilized for manufacturing of volumetric nanoplasmonic materials using the example of a Bi
2
O
3
–Ag eutectic-based nanocomposite. Here, we explain the evolution of silver in this composite, from the crystal growth through the post-growth annealing processes. Investigation with tunneling electron microscopy shows that silver initially enters the composite as an amorphous AgBiO
3
phase, which is formed as a wetting layer between the grains of Bi
2
O
3
primary phase. The post-growth annealing leads to decomposition of the amorphous phase into Bi
2
O
3
nanocrystals and intergranular Ag nanoparticles, providing the tunable localized surface plasmon resonance at yellow light wavelengths. |
doi_str_mv | 10.1007/s10853-016-0746-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01504431v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259623471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-238b8421c8376cb5fe22d34f17e0600932a29ba7daf529805aea72b1686c8b513</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwF3AlYvRO3d-s5JaqhUK3eh6mKSTmpImdSYtuPMdfEOfxISIrlxdOHzn43IIuWRwwwD0bWRgJKfAFAUtFMUjMmJScyoM8GMyAkCkKBQ7JWcxbgBAamQjcjc7NNW-LZs6aYokltXBh6SsE5f4fevztsxp5qJfJfclLvnXx-dknWx967au9aF01Tk5KVwV_cXPHZOXh9nzdE4Xy8en6WRBc57yliI3mRHIcsO1yjNZeMQVFwXTHhRAytFhmjm9coXE1IB03mnMmDIqN5lkfEyuB--rq-wulFsX3m3jSjufLGyfAZMgBGeHnr0a2F1o3vY-tnbT7EPdvWcRZaqQC91TbKDy0MQYfPGrZWD7Te2waWdWtt_UYtfBoRM7tl778Gf-v_QNMmd24w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259623471</pqid></control><display><type>article</type><title>Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadecka, K. ; Berger, M. H. ; Orlinski, K. ; Jozwik, I. ; Pawlak, D. A.</creator><creatorcontrib>Sadecka, K. ; Berger, M. H. ; Orlinski, K. ; Jozwik, I. ; Pawlak, D. A.</creatorcontrib><description>The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and utilized for manufacturing of volumetric nanoplasmonic materials using the example of a Bi
2
O
3
–Ag eutectic-based nanocomposite. Here, we explain the evolution of silver in this composite, from the crystal growth through the post-growth annealing processes. Investigation with tunneling electron microscopy shows that silver initially enters the composite as an amorphous AgBiO
3
phase, which is formed as a wetting layer between the grains of Bi
2
O
3
primary phase. The post-growth annealing leads to decomposition of the amorphous phase into Bi
2
O
3
nanocrystals and intergranular Ag nanoparticles, providing the tunable localized surface plasmon resonance at yellow light wavelengths.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0746-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Bismuth oxides ; Bismuth trioxide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Condensed Matter ; Crystal growth ; Crystallography and Scattering Methods ; Directional solidification ; Eutectics ; Evolution ; Materials Science ; Metamaterials ; Nanocomposites ; Nanocrystals ; Nanoparticles ; Physics ; Polymer Sciences ; Silver ; Solid Mechanics ; Two dimensional materials ; Wetting</subject><ispartof>Journal of materials science, 2017-05, Vol.52 (10), p.5503-5510</ispartof><rights>The Author(s) 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-238b8421c8376cb5fe22d34f17e0600932a29ba7daf529805aea72b1686c8b513</citedby><cites>FETCH-LOGICAL-c393t-238b8421c8376cb5fe22d34f17e0600932a29ba7daf529805aea72b1686c8b513</cites><orcidid>0000-0001-7819-5280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-0746-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-0746-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-01504431$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadecka, K.</creatorcontrib><creatorcontrib>Berger, M. H.</creatorcontrib><creatorcontrib>Orlinski, K.</creatorcontrib><creatorcontrib>Jozwik, I.</creatorcontrib><creatorcontrib>Pawlak, D. A.</creatorcontrib><title>Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and utilized for manufacturing of volumetric nanoplasmonic materials using the example of a Bi
2
O
3
–Ag eutectic-based nanocomposite. Here, we explain the evolution of silver in this composite, from the crystal growth through the post-growth annealing processes. Investigation with tunneling electron microscopy shows that silver initially enters the composite as an amorphous AgBiO
3
phase, which is formed as a wetting layer between the grains of Bi
2
O
3
primary phase. The post-growth annealing leads to decomposition of the amorphous phase into Bi
2
O
3
nanocrystals and intergranular Ag nanoparticles, providing the tunable localized surface plasmon resonance at yellow light wavelengths.</description><subject>Annealing</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Condensed Matter</subject><subject>Crystal growth</subject><subject>Crystallography and Scattering Methods</subject><subject>Directional solidification</subject><subject>Eutectics</subject><subject>Evolution</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Polymer Sciences</subject><subject>Silver</subject><subject>Solid Mechanics</subject><subject>Two dimensional materials</subject><subject>Wetting</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1Kw0AUhQdRsFYfwF3AlYvRO3d-s5JaqhUK3eh6mKSTmpImdSYtuPMdfEOfxISIrlxdOHzn43IIuWRwwwD0bWRgJKfAFAUtFMUjMmJScyoM8GMyAkCkKBQ7JWcxbgBAamQjcjc7NNW-LZs6aYokltXBh6SsE5f4fevztsxp5qJfJfclLvnXx-dknWx967au9aF01Tk5KVwV_cXPHZOXh9nzdE4Xy8en6WRBc57yliI3mRHIcsO1yjNZeMQVFwXTHhRAytFhmjm9coXE1IB03mnMmDIqN5lkfEyuB--rq-wulFsX3m3jSjufLGyfAZMgBGeHnr0a2F1o3vY-tnbT7EPdvWcRZaqQC91TbKDy0MQYfPGrZWD7Te2waWdWtt_UYtfBoRM7tl778Gf-v_QNMmd24w</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Sadecka, K.</creator><creator>Berger, M. H.</creator><creator>Orlinski, K.</creator><creator>Jozwik, I.</creator><creator>Pawlak, D. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7819-5280</orcidid></search><sort><creationdate>20170501</creationdate><title>Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial</title><author>Sadecka, K. ; Berger, M. H. ; Orlinski, K. ; Jozwik, I. ; Pawlak, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-238b8421c8376cb5fe22d34f17e0600932a29ba7daf529805aea72b1686c8b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Condensed Matter</topic><topic>Crystal growth</topic><topic>Crystallography and Scattering Methods</topic><topic>Directional solidification</topic><topic>Eutectics</topic><topic>Evolution</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Polymer Sciences</topic><topic>Silver</topic><topic>Solid Mechanics</topic><topic>Two dimensional materials</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadecka, K.</creatorcontrib><creatorcontrib>Berger, M. H.</creatorcontrib><creatorcontrib>Orlinski, K.</creatorcontrib><creatorcontrib>Jozwik, I.</creatorcontrib><creatorcontrib>Pawlak, D. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadecka, K.</au><au>Berger, M. H.</au><au>Orlinski, K.</au><au>Jozwik, I.</au><au>Pawlak, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>5503</spage><epage>5510</epage><pages>5503-5510</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and utilized for manufacturing of volumetric nanoplasmonic materials using the example of a Bi
2
O
3
–Ag eutectic-based nanocomposite. Here, we explain the evolution of silver in this composite, from the crystal growth through the post-growth annealing processes. Investigation with tunneling electron microscopy shows that silver initially enters the composite as an amorphous AgBiO
3
phase, which is formed as a wetting layer between the grains of Bi
2
O
3
primary phase. The post-growth annealing leads to decomposition of the amorphous phase into Bi
2
O
3
nanocrystals and intergranular Ag nanoparticles, providing the tunable localized surface plasmon resonance at yellow light wavelengths.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0746-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7819-5280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2017-05, Vol.52 (10), p.5503-5510 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01504431v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annealing Bismuth oxides Bismuth trioxide Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Condensed Matter Crystal growth Crystallography and Scattering Methods Directional solidification Eutectics Evolution Materials Science Metamaterials Nanocomposites Nanocrystals Nanoparticles Physics Polymer Sciences Silver Solid Mechanics Two dimensional materials Wetting |
title | Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20silver%20in%20a%20eutectic-based%20Bi2O3%E2%80%93Ag%20metamaterial&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sadecka,%20K.&rft.date=2017-05-01&rft.volume=52&rft.issue=10&rft.spage=5503&rft.epage=5510&rft.pages=5503-5510&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0746-2&rft_dat=%3Cproquest_hal_p%3E2259623471%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259623471&rft_id=info:pmid/&rfr_iscdi=true |