How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies

The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 2016-03, Vol.58, p.103-112
1. Verfasser: Bensoussan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 103
container_title Microelectronics and reliability
container_volume 58
creator Bensoussan, A.
description The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application. •The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.
doi_str_mv 10.1016/j.microrel.2015.12.020
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01503778v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271415302687</els_id><sourcerecordid>1816029982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</originalsourceid><addsrcrecordid>eNqFkUFPGzEQha2KSg2Uv1D5CIddPM5mveFEhIAgRdADB26WY4_BkXe92A4oF357nabttafRjN58o3mPkB_AamDQXmzq3ukYIvqaM5jVwGvG2RcygU7wat7A8xGZMMbbigtovpHjlDaMMcEAJuRzGT5oDvRtq4bs7I6qwdAxonE6Ux-GF5ox9rTf-uxGjzTliCnRMGJU2YXhki7G0Tv9u9mDHkLslfe76tFa-jN8YKR36oHmqIbkUg6xAPXrEHx4cZi-k69W-YSnf-oJebq9ebpeVqvHu_vrxarSU9Hkyhql1gw7szZdg9C1QqBddwDGoAK0ZqpbMDPRGj5rFOPzVlulUNu55jOtpyfk_IB9VV6O0fUq7mRQTi4XK7mfFd_YVIjuHYr27KAdY3jbYsqyd0mj92rAsE0SOmjLhXnHi7Q9SIv9KUW0_9jA5D4buZF_s5H7bCRwWbIpi1eHRSw_vzuMMmmHgy62R9RZmuD-h_gFhSqfPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816029982</pqid></control><display><type>article</type><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bensoussan, A.</creator><creatorcontrib>Bensoussan, A.</creatorcontrib><description>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application. •The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2015.12.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational Physics ; Condensed Matter ; Design-for-Reliability ; Electronics ; Engineering Sciences ; Gallium nitrides ; GaN ; GaN-on-Si ; General Physics ; III-nitrides ; Instrumentation and Detectors ; Mathematical models ; Mathematical Physics ; Mathematics ; Maxwell–Boltzmann distribution ; Mechanics ; Mechanics of materials ; Micro and nanotechnologies ; Microelectronics ; Nuclear power generation ; Optics ; Photonic ; Physics ; Probability ; Quantum statistics ; Reliability ; Reliability analysis ; Semiconductor devices ; Solid mechanics ; Statistical Mechanics ; Statistics ; Stresses ; Structural mechanics ; Thermics ; Transistors ; Transition State Theory ; Wide band gap semiconductor</subject><ispartof>Microelectronics and reliability, 2016-03, Vol.58, p.103-112</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2015.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01503778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensoussan, A.</creatorcontrib><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><title>Microelectronics and reliability</title><description>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application. •The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</description><subject>Computational Physics</subject><subject>Condensed Matter</subject><subject>Design-for-Reliability</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>GaN-on-Si</subject><subject>General Physics</subject><subject>III-nitrides</subject><subject>Instrumentation and Detectors</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Maxwell–Boltzmann distribution</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nuclear power generation</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Probability</subject><subject>Quantum statistics</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Semiconductor devices</subject><subject>Solid mechanics</subject><subject>Statistical Mechanics</subject><subject>Statistics</subject><subject>Stresses</subject><subject>Structural mechanics</subject><subject>Thermics</subject><subject>Transistors</subject><subject>Transition State Theory</subject><subject>Wide band gap semiconductor</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQha2KSg2Uv1D5CIddPM5mveFEhIAgRdADB26WY4_BkXe92A4oF357nabttafRjN58o3mPkB_AamDQXmzq3ukYIvqaM5jVwGvG2RcygU7wat7A8xGZMMbbigtovpHjlDaMMcEAJuRzGT5oDvRtq4bs7I6qwdAxonE6Ux-GF5ox9rTf-uxGjzTliCnRMGJU2YXhki7G0Tv9u9mDHkLslfe76tFa-jN8YKR36oHmqIbkUg6xAPXrEHx4cZi-k69W-YSnf-oJebq9ebpeVqvHu_vrxarSU9Hkyhql1gw7szZdg9C1QqBddwDGoAK0ZqpbMDPRGj5rFOPzVlulUNu55jOtpyfk_IB9VV6O0fUq7mRQTi4XK7mfFd_YVIjuHYr27KAdY3jbYsqyd0mj92rAsE0SOmjLhXnHi7Q9SIv9KUW0_9jA5D4buZF_s5H7bCRwWbIpi1eHRSw_vzuMMmmHgy62R9RZmuD-h_gFhSqfPA</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Bensoussan, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201603</creationdate><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><author>Bensoussan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Physics</topic><topic>Condensed Matter</topic><topic>Design-for-Reliability</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>GaN-on-Si</topic><topic>General Physics</topic><topic>III-nitrides</topic><topic>Instrumentation and Detectors</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Maxwell–Boltzmann distribution</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nuclear power generation</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Probability</topic><topic>Quantum statistics</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Semiconductor devices</topic><topic>Solid mechanics</topic><topic>Statistical Mechanics</topic><topic>Statistics</topic><topic>Stresses</topic><topic>Structural mechanics</topic><topic>Thermics</topic><topic>Transistors</topic><topic>Transition State Theory</topic><topic>Wide band gap semiconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensoussan, A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensoussan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</atitle><jtitle>Microelectronics and reliability</jtitle><date>2016-03</date><risdate>2016</risdate><volume>58</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><abstract>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application. •The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2015.12.020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 2016-03, Vol.58, p.103-112
issn 0026-2714
1872-941X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01503778v1
source Access via ScienceDirect (Elsevier)
subjects Computational Physics
Condensed Matter
Design-for-Reliability
Electronics
Engineering Sciences
Gallium nitrides
GaN
GaN-on-Si
General Physics
III-nitrides
Instrumentation and Detectors
Mathematical models
Mathematical Physics
Mathematics
Maxwell–Boltzmann distribution
Mechanics
Mechanics of materials
Micro and nanotechnologies
Microelectronics
Nuclear power generation
Optics
Photonic
Physics
Probability
Quantum statistics
Reliability
Reliability analysis
Semiconductor devices
Solid mechanics
Statistical Mechanics
Statistics
Stresses
Structural mechanics
Thermics
Transistors
Transition State Theory
Wide band gap semiconductor
title How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20quantify%20and%20predict%20long%20term%20multiple%20stress%20operation:%20Application%20to%20Normally-Off%20Power%20GaN%20transistor%20technologies&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Bensoussan,%20A.&rft.date=2016-03&rft.volume=58&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0026-2714&rft.eissn=1872-941X&rft_id=info:doi/10.1016/j.microrel.2015.12.020&rft_dat=%3Cproquest_hal_p%3E1816029982%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816029982&rft_id=info:pmid/&rft_els_id=S0026271415302687&rfr_iscdi=true