How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies
The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 2016-03, Vol.58, p.103-112 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | Microelectronics and reliability |
container_volume | 58 |
creator | Bensoussan, A. |
description | The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application.
•The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition. |
doi_str_mv | 10.1016/j.microrel.2015.12.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01503778v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271415302687</els_id><sourcerecordid>1816029982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</originalsourceid><addsrcrecordid>eNqFkUFPGzEQha2KSg2Uv1D5CIddPM5mveFEhIAgRdADB26WY4_BkXe92A4oF357nabttafRjN58o3mPkB_AamDQXmzq3ukYIvqaM5jVwGvG2RcygU7wat7A8xGZMMbbigtovpHjlDaMMcEAJuRzGT5oDvRtq4bs7I6qwdAxonE6Ux-GF5ox9rTf-uxGjzTliCnRMGJU2YXhki7G0Tv9u9mDHkLslfe76tFa-jN8YKR36oHmqIbkUg6xAPXrEHx4cZi-k69W-YSnf-oJebq9ebpeVqvHu_vrxarSU9Hkyhql1gw7szZdg9C1QqBddwDGoAK0ZqpbMDPRGj5rFOPzVlulUNu55jOtpyfk_IB9VV6O0fUq7mRQTi4XK7mfFd_YVIjuHYr27KAdY3jbYsqyd0mj92rAsE0SOmjLhXnHi7Q9SIv9KUW0_9jA5D4buZF_s5H7bCRwWbIpi1eHRSw_vzuMMmmHgy62R9RZmuD-h_gFhSqfPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816029982</pqid></control><display><type>article</type><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bensoussan, A.</creator><creatorcontrib>Bensoussan, A.</creatorcontrib><description>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application.
•The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2015.12.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational Physics ; Condensed Matter ; Design-for-Reliability ; Electronics ; Engineering Sciences ; Gallium nitrides ; GaN ; GaN-on-Si ; General Physics ; III-nitrides ; Instrumentation and Detectors ; Mathematical models ; Mathematical Physics ; Mathematics ; Maxwell–Boltzmann distribution ; Mechanics ; Mechanics of materials ; Micro and nanotechnologies ; Microelectronics ; Nuclear power generation ; Optics ; Photonic ; Physics ; Probability ; Quantum statistics ; Reliability ; Reliability analysis ; Semiconductor devices ; Solid mechanics ; Statistical Mechanics ; Statistics ; Stresses ; Structural mechanics ; Thermics ; Transistors ; Transition State Theory ; Wide band gap semiconductor</subject><ispartof>Microelectronics and reliability, 2016-03, Vol.58, p.103-112</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2015.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01503778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensoussan, A.</creatorcontrib><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><title>Microelectronics and reliability</title><description>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application.
•The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</description><subject>Computational Physics</subject><subject>Condensed Matter</subject><subject>Design-for-Reliability</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>GaN-on-Si</subject><subject>General Physics</subject><subject>III-nitrides</subject><subject>Instrumentation and Detectors</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Maxwell–Boltzmann distribution</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nuclear power generation</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Probability</subject><subject>Quantum statistics</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Semiconductor devices</subject><subject>Solid mechanics</subject><subject>Statistical Mechanics</subject><subject>Statistics</subject><subject>Stresses</subject><subject>Structural mechanics</subject><subject>Thermics</subject><subject>Transistors</subject><subject>Transition State Theory</subject><subject>Wide band gap semiconductor</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQha2KSg2Uv1D5CIddPM5mveFEhIAgRdADB26WY4_BkXe92A4oF357nabttafRjN58o3mPkB_AamDQXmzq3ukYIvqaM5jVwGvG2RcygU7wat7A8xGZMMbbigtovpHjlDaMMcEAJuRzGT5oDvRtq4bs7I6qwdAxonE6Ux-GF5ox9rTf-uxGjzTliCnRMGJU2YXhki7G0Tv9u9mDHkLslfe76tFa-jN8YKR36oHmqIbkUg6xAPXrEHx4cZi-k69W-YSnf-oJebq9ebpeVqvHu_vrxarSU9Hkyhql1gw7szZdg9C1QqBddwDGoAK0ZqpbMDPRGj5rFOPzVlulUNu55jOtpyfk_IB9VV6O0fUq7mRQTi4XK7mfFd_YVIjuHYr27KAdY3jbYsqyd0mj92rAsE0SOmjLhXnHi7Q9SIv9KUW0_9jA5D4buZF_s5H7bCRwWbIpi1eHRSw_vzuMMmmHgy62R9RZmuD-h_gFhSqfPA</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Bensoussan, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201603</creationdate><title>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</title><author>Bensoussan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fdaab0e8dbd84e18677efb811ddea1efd3c61d576d254a0296cfaaecf9c25cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Physics</topic><topic>Condensed Matter</topic><topic>Design-for-Reliability</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>GaN-on-Si</topic><topic>General Physics</topic><topic>III-nitrides</topic><topic>Instrumentation and Detectors</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Maxwell–Boltzmann distribution</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nuclear power generation</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Probability</topic><topic>Quantum statistics</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Semiconductor devices</topic><topic>Solid mechanics</topic><topic>Statistical Mechanics</topic><topic>Statistics</topic><topic>Stresses</topic><topic>Structural mechanics</topic><topic>Thermics</topic><topic>Transistors</topic><topic>Transition State Theory</topic><topic>Wide band gap semiconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensoussan, A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensoussan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies</atitle><jtitle>Microelectronics and reliability</jtitle><date>2016-03</date><risdate>2016</risdate><volume>58</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><abstract>The present paper is implementing a numerical application of the Boltzmann–Arrhenius–Zhurkov (BAZ) model and relates to the statistic reliability model derived from the Transition State Theory paradigm. It shows how the quantified tool can be applied to determine the associated effective activation energy. The unified multiple stress reliability model for electronic devices is applied to Normally-Off Power GaN transistor technologies to quantify and predict the reliability figures of this electronic type of product when operating under multiple stresses in an embedded system operating under such harsh environment conditions as set for Aerospace, Space, Nuclear, Submarine, Transport or Ground application.
•The generalized BAZ model is refined and adapted to the GaN technology.•We have completed numerical Application on a Normally-off transistor GaN GS66508P-E03 650V enhancement mode manufactured by GaN Systems.•The concept of Maximum Rating limits and burnout conditions have been useful to derive reliability key parameters.•When multiple stresses are applied simultaneously, maximum rating limits values are imbricated to derive equivalent activation energy.•This helps to give reliability quantification rule for effective Ea and related condition of stress to assess RUL (Remaining Useful Life) condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2015.12.020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2016-03, Vol.58, p.103-112 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01503778v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational Physics Condensed Matter Design-for-Reliability Electronics Engineering Sciences Gallium nitrides GaN GaN-on-Si General Physics III-nitrides Instrumentation and Detectors Mathematical models Mathematical Physics Mathematics Maxwell–Boltzmann distribution Mechanics Mechanics of materials Micro and nanotechnologies Microelectronics Nuclear power generation Optics Photonic Physics Probability Quantum statistics Reliability Reliability analysis Semiconductor devices Solid mechanics Statistical Mechanics Statistics Stresses Structural mechanics Thermics Transistors Transition State Theory Wide band gap semiconductor |
title | How to quantify and predict long term multiple stress operation: Application to Normally-Off Power GaN transistor technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20quantify%20and%20predict%20long%20term%20multiple%20stress%20operation:%20Application%20to%20Normally-Off%20Power%20GaN%20transistor%20technologies&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Bensoussan,%20A.&rft.date=2016-03&rft.volume=58&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0026-2714&rft.eissn=1872-941X&rft_id=info:doi/10.1016/j.microrel.2015.12.020&rft_dat=%3Cproquest_hal_p%3E1816029982%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816029982&rft_id=info:pmid/&rft_els_id=S0026271415302687&rfr_iscdi=true |