Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning

Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-07, Vol.119 (2), p.028101-028101, Article 028101
Hauptverfasser: Walter, J-C, Dorignac, J, Lorman, V, Rech, J, Bouet, J-Y, Nollmann, M, Palmeri, J, Parmeggiani, A, Geniet, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 028101
container_issue 2
container_start_page 028101
container_title Physical review letters
container_volume 119
creator Walter, J-C
Dorignac, J
Lorman, V
Rech, J
Bouet, J-Y
Nollmann, M
Palmeri, J
Parmeggiani, A
Geniet, F
description Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.
doi_str_mv 10.1103/PhysRevLett.119.028101
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01493262v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924604098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-921bd26526c84b3bed96bfb255b81da7d708c32333ebd3e4610b504e351d64693</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhUVpabZp_0LQsT04mZFk2eotDW0S2NKlTQg5Ccked1VsayN5F_Lv6-A0FAaGeXzzBuYxdoJwigjybLN9zD_psKZpmgVzCqJGwFdshVCZokJUr9kKQGJhAKoj9i7nPwCAQtdv2ZGoq1JKZVbs_tc-dWH8zePINylOFEZ-5w6UPy9j3G1johwyd3Px79Rs3RjywLuY-BfXTJSC6_kljXEgvnFpClOI4-z4nr3pXJ_pw3M_Zrffvt5cXBXrH5fXF-frolGlmQoj0LdCl0I3tfLSU2u077woS19j66q2grqRQkpJvpWkNIIvQZEssdVKG3nMPi2-W9fbXQqDS482umCvztf2SQNURgotDjizHxd2l-LDnvJkh5Ab6ns3Utxni0YoDQpMPaN6QZsUc07UvXgj2KcI7H8RzIKxSwTz4snzjb0fqH1Z-_dz-RfsEoQ-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924604098</pqid></control><display><type>article</type><title>Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning</title><source>American Physical Society Journals</source><creator>Walter, J-C ; Dorignac, J ; Lorman, V ; Rech, J ; Bouet, J-Y ; Nollmann, M ; Palmeri, J ; Parmeggiani, A ; Geniet, F</creator><creatorcontrib>Walter, J-C ; Dorignac, J ; Lorman, V ; Rech, J ; Bouet, J-Y ; Nollmann, M ; Palmeri, J ; Parmeggiani, A ; Geniet, F</creatorcontrib><description>Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.119.028101</identifier><identifier>PMID: 28753349</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Adaptation and Self-Organizing Systems ; Cellular Biology ; Condensed Matter ; Life Sciences ; Nonlinear Sciences ; Physics ; Soft Condensed Matter ; Subcellular Processes</subject><ispartof>Physical review letters, 2017-07, Vol.119 (2), p.028101-028101, Article 028101</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-921bd26526c84b3bed96bfb255b81da7d708c32333ebd3e4610b504e351d64693</citedby><cites>FETCH-LOGICAL-c459t-921bd26526c84b3bed96bfb255b81da7d708c32333ebd3e4610b504e351d64693</cites><orcidid>0000-0003-3339-2349 ; 0000-0003-1488-5455 ; 0000-0001-6337-0955 ; 0000-0002-7313-0100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28753349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01493262$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, J-C</creatorcontrib><creatorcontrib>Dorignac, J</creatorcontrib><creatorcontrib>Lorman, V</creatorcontrib><creatorcontrib>Rech, J</creatorcontrib><creatorcontrib>Bouet, J-Y</creatorcontrib><creatorcontrib>Nollmann, M</creatorcontrib><creatorcontrib>Palmeri, J</creatorcontrib><creatorcontrib>Parmeggiani, A</creatorcontrib><creatorcontrib>Geniet, F</creatorcontrib><title>Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.</description><subject>Adaptation and Self-Organizing Systems</subject><subject>Cellular Biology</subject><subject>Condensed Matter</subject><subject>Life Sciences</subject><subject>Nonlinear Sciences</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Subcellular Processes</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkUFr3DAQhUVpabZp_0LQsT04mZFk2eotDW0S2NKlTQg5Ccked1VsayN5F_Lv6-A0FAaGeXzzBuYxdoJwigjybLN9zD_psKZpmgVzCqJGwFdshVCZokJUr9kKQGJhAKoj9i7nPwCAQtdv2ZGoq1JKZVbs_tc-dWH8zePINylOFEZ-5w6UPy9j3G1johwyd3Px79Rs3RjywLuY-BfXTJSC6_kljXEgvnFpClOI4-z4nr3pXJ_pw3M_Zrffvt5cXBXrH5fXF-frolGlmQoj0LdCl0I3tfLSU2u077woS19j66q2grqRQkpJvpWkNIIvQZEssdVKG3nMPi2-W9fbXQqDS482umCvztf2SQNURgotDjizHxd2l-LDnvJkh5Ab6ns3Utxni0YoDQpMPaN6QZsUc07UvXgj2KcI7H8RzIKxSwTz4snzjb0fqH1Z-_dz-RfsEoQ-</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Walter, J-C</creator><creator>Dorignac, J</creator><creator>Lorman, V</creator><creator>Rech, J</creator><creator>Bouet, J-Y</creator><creator>Nollmann, M</creator><creator>Palmeri, J</creator><creator>Parmeggiani, A</creator><creator>Geniet, F</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0003-1488-5455</orcidid><orcidid>https://orcid.org/0000-0001-6337-0955</orcidid><orcidid>https://orcid.org/0000-0002-7313-0100</orcidid></search><sort><creationdate>20170713</creationdate><title>Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning</title><author>Walter, J-C ; Dorignac, J ; Lorman, V ; Rech, J ; Bouet, J-Y ; Nollmann, M ; Palmeri, J ; Parmeggiani, A ; Geniet, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-921bd26526c84b3bed96bfb255b81da7d708c32333ebd3e4610b504e351d64693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation and Self-Organizing Systems</topic><topic>Cellular Biology</topic><topic>Condensed Matter</topic><topic>Life Sciences</topic><topic>Nonlinear Sciences</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, J-C</creatorcontrib><creatorcontrib>Dorignac, J</creatorcontrib><creatorcontrib>Lorman, V</creatorcontrib><creatorcontrib>Rech, J</creatorcontrib><creatorcontrib>Bouet, J-Y</creatorcontrib><creatorcontrib>Nollmann, M</creatorcontrib><creatorcontrib>Palmeri, J</creatorcontrib><creatorcontrib>Parmeggiani, A</creatorcontrib><creatorcontrib>Geniet, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, J-C</au><au>Dorignac, J</au><au>Lorman, V</au><au>Rech, J</au><au>Bouet, J-Y</au><au>Nollmann, M</au><au>Palmeri, J</au><au>Parmeggiani, A</au><au>Geniet, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-07-13</date><risdate>2017</risdate><volume>119</volume><issue>2</issue><spage>028101</spage><epage>028101</epage><pages>028101-028101</pages><artnum>028101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>28753349</pmid><doi>10.1103/PhysRevLett.119.028101</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3339-2349</orcidid><orcidid>https://orcid.org/0000-0003-1488-5455</orcidid><orcidid>https://orcid.org/0000-0001-6337-0955</orcidid><orcidid>https://orcid.org/0000-0002-7313-0100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-07, Vol.119 (2), p.028101-028101, Article 028101
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01493262v1
source American Physical Society Journals
subjects Adaptation and Self-Organizing Systems
Cellular Biology
Condensed Matter
Life Sciences
Nonlinear Sciences
Physics
Soft Condensed Matter
Subcellular Processes
title Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfing%20on%20Protein%20Waves:%20Proteophoresis%20as%20a%20Mechanism%20for%20Bacterial%20Genome%20Partitioning&rft.jtitle=Physical%20review%20letters&rft.au=Walter,%20J-C&rft.date=2017-07-13&rft.volume=119&rft.issue=2&rft.spage=028101&rft.epage=028101&rft.pages=028101-028101&rft.artnum=028101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.119.028101&rft_dat=%3Cproquest_hal_p%3E1924604098%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924604098&rft_id=info:pmid/28753349&rfr_iscdi=true