A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells

► We synthesize and characterize a new YSZ composite sol with a low organic content using the sol–gel process. ► We deposit this composite sol on sintered or non-sintered YSZ–NiO cermet to prepare a dense electrolyte with the dip-coating technique. ► We study the influence of the composite sol compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2012-05, Vol.206, p.77-83
Hauptverfasser: Courtin, E., Boy, P., Piquero, T., Vulliet, J., Poirot, N., Laberty-Robert, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue
container_start_page 77
container_title Journal of power sources
container_volume 206
creator Courtin, E.
Boy, P.
Piquero, T.
Vulliet, J.
Poirot, N.
Laberty-Robert, C.
description ► We synthesize and characterize a new YSZ composite sol with a low organic content using the sol–gel process. ► We deposit this composite sol on sintered or non-sintered YSZ–NiO cermet to prepare a dense electrolyte with the dip-coating technique. ► We study the influence of the composite sol composition, the support, the sintering temperature, co-sintering on the film microstructure. ► The dense electrolyte is processed in an entire fuel cell. ► We characterize the electrical performances of the as prepared dense electrolyte in an entire fuel cell. ZrO2–8% Y2O3 (YSZ) thick film was deposited on a YSZ–NiO anode and co-sintered to obtain a gas-tight electrolyte for an application as Solid Oxide Fuel Cell. A YSZ sol–gel composite sol is synthesized from a YSZ colloidal binder and a YSZ commercial powder and deposited as a thick (>10μm) monolayer by the dip-coating process. The evolution of the composite sol viscosity with time and its influence on the deposited film thickness is studied. The influence of the composite sol composition, the film sintering on the films microstructure is also studied in order to achieve dense films. The interest of co-sintering the electrolyte with the anodic support is demonstrated. Ionic conductivity and activation energy are measured on pellets obtained from pressed-powder obtained from (a) the calcination of composite sol and (b) the commercial powder. Conductivity of 0.03Scm−1 at 800°C and activation energy of 0.9eV were measured through impedance spectroscopy. Finally, an entire cell is processed with the developed electrolyte and polarization curves (I–V) were measured at 850°C. OCV of 1.23V was achieved, indicating the quality of the synthesized YSZ electrolyte.
doi_str_mv 10.1016/j.jpowsour.2012.01.109
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01492861v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775312002108</els_id><sourcerecordid>1019656902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f22fd90d69fda641a673ffe33725eb10b12345e1617dd9d677929b5f0e26523f3</originalsourceid><addsrcrecordid>eNqFkMFuUzEQRS0EEqHwC8gbJFi84LHfs-MdUUQpUqQuShewsRx7DI6c-GG_FLrjH_qH_RIcpXTLakZX5861LyGvgc2BgXy_nW_H_KvmQ5lzBnzOoOn6CZnBQomOq2F4SmZMqEWn1CCekxe1bhljAIrNyPWSurwbc40T0prT_Z-775joWLLDWumU24qjLUgt_Xr1jWJCN5WcbhsecqFXOUVPL39Hj_T80JwrTKm-JM-CTRVfPcwzcn3-8cvqoltffvq8Wq471zM9dYHz4DXzUgdvZQ9WKhECCqH4gBtgG-CiHxAkKO-1l0pprjdDYMjlwEUQZ-Td6e4Pm8xY4s6WW5NtNBfLtTlqDHrNFxJuoLFvT2z7288D1snsYnXttXaP-VBN61LLQWrGGypPqCu51oLh8TawIyfN1vzr3Bw7bzlN18345iHDVmdTKHbvYn1080Fx4Kxv3IcTh62cm4jFVBdx79DH0vo1Psf_Rf0FLLWalQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019656902</pqid></control><display><type>article</type><title>A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells</title><source>Elsevier ScienceDirect Journals</source><creator>Courtin, E. ; Boy, P. ; Piquero, T. ; Vulliet, J. ; Poirot, N. ; Laberty-Robert, C.</creator><creatorcontrib>Courtin, E. ; Boy, P. ; Piquero, T. ; Vulliet, J. ; Poirot, N. ; Laberty-Robert, C.</creatorcontrib><description>► We synthesize and characterize a new YSZ composite sol with a low organic content using the sol–gel process. ► We deposit this composite sol on sintered or non-sintered YSZ–NiO cermet to prepare a dense electrolyte with the dip-coating technique. ► We study the influence of the composite sol composition, the support, the sintering temperature, co-sintering on the film microstructure. ► The dense electrolyte is processed in an entire fuel cell. ► We characterize the electrical performances of the as prepared dense electrolyte in an entire fuel cell. ZrO2–8% Y2O3 (YSZ) thick film was deposited on a YSZ–NiO anode and co-sintered to obtain a gas-tight electrolyte for an application as Solid Oxide Fuel Cell. A YSZ sol–gel composite sol is synthesized from a YSZ colloidal binder and a YSZ commercial powder and deposited as a thick (&gt;10μm) monolayer by the dip-coating process. The evolution of the composite sol viscosity with time and its influence on the deposited film thickness is studied. The influence of the composite sol composition, the film sintering on the films microstructure is also studied in order to achieve dense films. The interest of co-sintering the electrolyte with the anodic support is demonstrated. Ionic conductivity and activation energy are measured on pellets obtained from pressed-powder obtained from (a) the calcination of composite sol and (b) the commercial powder. Conductivity of 0.03Scm−1 at 800°C and activation energy of 0.9eV were measured through impedance spectroscopy. Finally, an entire cell is processed with the developed electrolyte and polarization curves (I–V) were measured at 850°C. OCV of 1.23V was achieved, indicating the quality of the synthesized YSZ electrolyte.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2012.01.109</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activation energy ; Applied sciences ; Chemical Sciences ; Deposition ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolyte ; Electrolytes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Materials ; Sol gel process ; Solid Oxide Fuel Cells ; Sol–gel ; Thick films ; YSZ ; Yttria stabilized zirconia ; Zirconium dioxide</subject><ispartof>Journal of power sources, 2012-05, Vol.206, p.77-83</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f22fd90d69fda641a673ffe33725eb10b12345e1617dd9d677929b5f0e26523f3</citedby><cites>FETCH-LOGICAL-c409t-f22fd90d69fda641a673ffe33725eb10b12345e1617dd9d677929b5f0e26523f3</cites><orcidid>0000-0003-3230-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2012.01.109$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25721204$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01492861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Courtin, E.</creatorcontrib><creatorcontrib>Boy, P.</creatorcontrib><creatorcontrib>Piquero, T.</creatorcontrib><creatorcontrib>Vulliet, J.</creatorcontrib><creatorcontrib>Poirot, N.</creatorcontrib><creatorcontrib>Laberty-Robert, C.</creatorcontrib><title>A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells</title><title>Journal of power sources</title><description>► We synthesize and characterize a new YSZ composite sol with a low organic content using the sol–gel process. ► We deposit this composite sol on sintered or non-sintered YSZ–NiO cermet to prepare a dense electrolyte with the dip-coating technique. ► We study the influence of the composite sol composition, the support, the sintering temperature, co-sintering on the film microstructure. ► The dense electrolyte is processed in an entire fuel cell. ► We characterize the electrical performances of the as prepared dense electrolyte in an entire fuel cell. ZrO2–8% Y2O3 (YSZ) thick film was deposited on a YSZ–NiO anode and co-sintered to obtain a gas-tight electrolyte for an application as Solid Oxide Fuel Cell. A YSZ sol–gel composite sol is synthesized from a YSZ colloidal binder and a YSZ commercial powder and deposited as a thick (&gt;10μm) monolayer by the dip-coating process. The evolution of the composite sol viscosity with time and its influence on the deposited film thickness is studied. The influence of the composite sol composition, the film sintering on the films microstructure is also studied in order to achieve dense films. The interest of co-sintering the electrolyte with the anodic support is demonstrated. Ionic conductivity and activation energy are measured on pellets obtained from pressed-powder obtained from (a) the calcination of composite sol and (b) the commercial powder. Conductivity of 0.03Scm−1 at 800°C and activation energy of 0.9eV were measured through impedance spectroscopy. Finally, an entire cell is processed with the developed electrolyte and polarization curves (I–V) were measured at 850°C. OCV of 1.23V was achieved, indicating the quality of the synthesized YSZ electrolyte.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Deposition</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolyte</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Materials</subject><subject>Sol gel process</subject><subject>Solid Oxide Fuel Cells</subject><subject>Sol–gel</subject><subject>Thick films</subject><subject>YSZ</subject><subject>Yttria stabilized zirconia</subject><subject>Zirconium dioxide</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuUzEQRS0EEqHwC8gbJFi84LHfs-MdUUQpUqQuShewsRx7DI6c-GG_FLrjH_qH_RIcpXTLakZX5861LyGvgc2BgXy_nW_H_KvmQ5lzBnzOoOn6CZnBQomOq2F4SmZMqEWn1CCekxe1bhljAIrNyPWSurwbc40T0prT_Z-775joWLLDWumU24qjLUgt_Xr1jWJCN5WcbhsecqFXOUVPL39Hj_T80JwrTKm-JM-CTRVfPcwzcn3-8cvqoltffvq8Wq471zM9dYHz4DXzUgdvZQ9WKhECCqH4gBtgG-CiHxAkKO-1l0pprjdDYMjlwEUQZ-Td6e4Pm8xY4s6WW5NtNBfLtTlqDHrNFxJuoLFvT2z7288D1snsYnXttXaP-VBN61LLQWrGGypPqCu51oLh8TawIyfN1vzr3Bw7bzlN18345iHDVmdTKHbvYn1080Fx4Kxv3IcTh62cm4jFVBdx79DH0vo1Psf_Rf0FLLWalQ</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Courtin, E.</creator><creator>Boy, P.</creator><creator>Piquero, T.</creator><creator>Vulliet, J.</creator><creator>Poirot, N.</creator><creator>Laberty-Robert, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid></search><sort><creationdate>20120515</creationdate><title>A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells</title><author>Courtin, E. ; Boy, P. ; Piquero, T. ; Vulliet, J. ; Poirot, N. ; Laberty-Robert, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f22fd90d69fda641a673ffe33725eb10b12345e1617dd9d677929b5f0e26523f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Deposition</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolyte</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Materials</topic><topic>Sol gel process</topic><topic>Solid Oxide Fuel Cells</topic><topic>Sol–gel</topic><topic>Thick films</topic><topic>YSZ</topic><topic>Yttria stabilized zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courtin, E.</creatorcontrib><creatorcontrib>Boy, P.</creatorcontrib><creatorcontrib>Piquero, T.</creatorcontrib><creatorcontrib>Vulliet, J.</creatorcontrib><creatorcontrib>Poirot, N.</creatorcontrib><creatorcontrib>Laberty-Robert, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courtin, E.</au><au>Boy, P.</au><au>Piquero, T.</au><au>Vulliet, J.</au><au>Poirot, N.</au><au>Laberty-Robert, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells</atitle><jtitle>Journal of power sources</jtitle><date>2012-05-15</date><risdate>2012</risdate><volume>206</volume><spage>77</spage><epage>83</epage><pages>77-83</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► We synthesize and characterize a new YSZ composite sol with a low organic content using the sol–gel process. ► We deposit this composite sol on sintered or non-sintered YSZ–NiO cermet to prepare a dense electrolyte with the dip-coating technique. ► We study the influence of the composite sol composition, the support, the sintering temperature, co-sintering on the film microstructure. ► The dense electrolyte is processed in an entire fuel cell. ► We characterize the electrical performances of the as prepared dense electrolyte in an entire fuel cell. ZrO2–8% Y2O3 (YSZ) thick film was deposited on a YSZ–NiO anode and co-sintered to obtain a gas-tight electrolyte for an application as Solid Oxide Fuel Cell. A YSZ sol–gel composite sol is synthesized from a YSZ colloidal binder and a YSZ commercial powder and deposited as a thick (&gt;10μm) monolayer by the dip-coating process. The evolution of the composite sol viscosity with time and its influence on the deposited film thickness is studied. The influence of the composite sol composition, the film sintering on the films microstructure is also studied in order to achieve dense films. The interest of co-sintering the electrolyte with the anodic support is demonstrated. Ionic conductivity and activation energy are measured on pellets obtained from pressed-powder obtained from (a) the calcination of composite sol and (b) the commercial powder. Conductivity of 0.03Scm−1 at 800°C and activation energy of 0.9eV were measured through impedance spectroscopy. Finally, an entire cell is processed with the developed electrolyte and polarization curves (I–V) were measured at 850°C. OCV of 1.23V was achieved, indicating the quality of the synthesized YSZ electrolyte.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2012.01.109</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2012-05, Vol.206, p.77-83
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_01492861v1
source Elsevier ScienceDirect Journals
subjects Activation energy
Applied sciences
Chemical Sciences
Deposition
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrolyte
Electrolytes
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Materials
Sol gel process
Solid Oxide Fuel Cells
Sol–gel
Thick films
YSZ
Yttria stabilized zirconia
Zirconium dioxide
title A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20composite%20sol%E2%80%93gel%20process%20to%20prepare%20a%20YSZ%20electrolyte%20for%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Courtin,%20E.&rft.date=2012-05-15&rft.volume=206&rft.spage=77&rft.epage=83&rft.pages=77-83&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2012.01.109&rft_dat=%3Cproquest_hal_p%3E1019656902%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019656902&rft_id=info:pmid/&rft_els_id=S0378775312002108&rfr_iscdi=true