Controls on chemical weathering on a mountainous volcanic tropical island: Guadeloupe (French West Indies)

Guadeloupe Island is a natural laboratory, ideally suited to the study of biogeochemical processes in tropical and mountainous volcanic environments. The island’s east–west rainfall gradient (1200–8000mm/yr) is superimposed on a north–south age gradient (2.7Ma to present), providing a unique opportu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2015-12, Vol.171, p.216-237
Hauptverfasser: Dessert, C., Lajeunesse, E., Lloret, E., Clergue, C., Crispi, O., Gorge, C., Quidelleur, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Guadeloupe Island is a natural laboratory, ideally suited to the study of biogeochemical processes in tropical and mountainous volcanic environments. The island’s east–west rainfall gradient (1200–8000mm/yr) is superimposed on a north–south age gradient (2.7Ma to present), providing a unique opportunity to investigate the influence of rainfall and rock age on the chemical weathering of volcanic terrains. Taking advantage of this configuration, we present the first temporal survey (2007–2013) of the geochemical composition of the dissolved load of rain and river waters in Guadeloupe. Our data demonstrate that the chemical composition of river water is influenced by rainfall abundance, hydrothermal alteration (from active or fossilized volcanic systems) and interactions between water and minerals during chemical weathering processes. The contribution of rain to the overall chemical balance is especially significant in the older northern part of the island, where the ferralitic soils are base-cation-depleted. Between 15% and 65% of the Ca or Mg riverine budgets comes from atmospheric deposits, highlighting the major role of rainfall in the geochemical budgets of small tropical and mountainous watersheds. The river water dataset indicates that different chemical weathering processes dominate the budget depending on the age of the local bedrock. In the younger, southern part of the island, a pool of easily-weatherable andesitic minerals from the bedrock dominates. The contribution from this pool decreases significantly (to 5–15wt.% of the bulk soil) towards the older terrains in the north. The northern rivers are characterized by low Ca/Mg ratios (0.5–1.0), intermediate between those of fresh rocks (1.7–3.3) and soil (0.1). Weathering in the northern part of the island is therefore dominated by the dissolution of depleted secondary minerals into soils. The Ca/Mg ratio of the river water increases from north to south, eventually reaching values similar to those of the bedrocks, arguing for congruent dissolution of the youngest volcanic rocks. The magnesium isotopic composition of river water (δ26Mg) reflects inputs from both rain and weathering processes. In southern and central rivers, the Mg isotopic value of waters after correction for rain inputs (δ26Mgwea) is systematically depleted in heavy isotopes (mean value of −0.34‰) relative to that of the bedrock (−0.24‰ to −0.15‰). In the north, the δ26Mgwea of the river water (−0.09‰) is heavier than that of the a
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2015.09.009