The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans

Nascent-strand mapping of active DNA replication origins before and after gastrulation in C. elegans reveals that replication initiation is coordinated with transcriptional programs during embryonic development. Although some features underlying replication-origin activation in metazoan cells have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2017-03, Vol.24 (3), p.290-299
Hauptverfasser: Rodríguez-Martínez, Marta, Pinzón, Natalia, Ghommidh, Charles, Beyne, Emmanuelle, Seitz, Hervé, Cayrou, Christelle, Méchali, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nascent-strand mapping of active DNA replication origins before and after gastrulation in C. elegans reveals that replication initiation is coordinated with transcriptional programs during embryonic development. Although some features underlying replication-origin activation in metazoan cells have been determined, little is known about their regulation during metazoan development. Using the nascent-strand purification method, here we identified replication origins throughout Caenorhabditis elegans embryonic development and found that the origin repertoire is thoroughly reorganized after gastrulation onset. During the pluripotent embryonic stages (pregastrula), potential cruciform structures and open chromatin are determining factors that establish replication origins. The observed enrichment of replication origins in transcription factor–binding sites and their presence in promoters of highly transcribed genes, particularly operons, suggest that transcriptional activity contributes to replication initiation before gastrulation. After the gastrula transition, when embryonic differentiation programs are set, new origins are selected at enhancers, close to CpG-island-like sequences, and at noncoding genes. Our findings suggest that origin selection coordinates replication initiation with transcriptional programs during metazoan development.
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.3363